5 resultados para Stoves.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The segment of the structural ceramics industry is one of the most important to the economy of Rio Grande do Norte. The supply chain makes a total of 206 companies that are distributed in 39 counties, concentrated in three regional centers: Seridó Apodi / Assu and great Natal. The ceramic industry in the state is around 80 million pieces per month, with 50,186 million of these tiles, which makes the Rio Grande do Norte one of the largest manufacturers of product in the Country. Different ceramic products can be manufactured by mixing two or more clays and accessory minerals. Mixtures acquire characteristics and form what is called the ceramic body. Refractory masses have a high melting point and thermal shock support. Its composition contains refractory clays with a little iron oxide and material fluxes. A line of semi-refractory ceramic products that stands out for its high added value are the bricks in ivory or red, used in building barbecues, fireplaces, wood stoves and braziers. The aim of this study was to use alumina-clay or silica- alumina-clay to the industrial RN, for the production of refractory bricks semi-refractory burning light. Clay and Kaolin were characterized for their chemical and mineralogical composition, immediately after ceramic bodies were made with different concentrations of the components, they were raised, pressed and sintered. After sintering the resulting products were characterized in terms of mechanical, thermal and dimensional than the characterization by X-ray diffraction and scanning electron microscopy. After obtaining the results, we concluded that the studied clay can be used for the production of semi-refractory bricks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presents a composite formed by orthophthalic resin and fiber loading of carnauba straw. The fibers were first dried in direct sun exposure and subsequently ground into fodder for the reduction in size. Various formulations of the composite were preliminarily tested by choosing the one presenting the best processability in applying the mold. The composite produced is used for the manufacture of a parabolic surface subsequently coated with mirror segments, flexible plastic, for reflecting the solar rays incident on it. The reflective parable represents the main element of the solar cooker that works with the concentration of sunlight and has dimensions of 1.14 m in diameter and area of 1.0 m². Manufacturing processes and assembly of solar cooker concentration produced are presented. The results of tests for cooking and baking various foods, including rice, pasta, beans, cake, cassava, shrimp, beef, breaded demonstrating the competitiveness of solar cooker studied with other stoves already manufactured and tested in Brazil are presented and in the world. It was also demonstrated the feasibility of the proposed composite for Prototypes manufacture of solar and other structures that do not require great efforts resistance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work presents a contribution in the study of modelings of transference of heat for foods submitted to the experimental tests in the considered solar oven, where the best modeling for the beefburger of chicken in study was evaluated, comparing the results, considering this food as a half-infinite(1er object considered model) and,after that, considered the chicken beefburger as a plain plate in transient regimen in two distinct conditions: not considering and another model considering the contribution of the generation term, through the Criterion of Pomerantsev. The Sun, beyond life source, is the origin of all the energy forms that the man comes using during its history and can be the reply for the question of the energy supplying in the future, a time that learns to use to advantage in rational way the light that this star constantly special tax on our planet. Shining more than the 5 billion years, it is calculated that the Sun still in them will privilege for others 6 billion years, or either, it is only in the half of its existence and will launch on the Earth, only in this year, 4000 times more energy that we will consume. Front to this reality, would be irrational not to search, by all means technical possible, to use to advantage this clean, ecological and gratuitous power plant. In this dissertation evaluate the performance of solar cooker of the type box. Laboratory of Solar Energy of the Federal University of the Great River of North - UFRN was constructed by the group (LES) a model of solar stove of the type box and was tested its viability technique, considering modeling foods submitted when baking in the solar oven, the cooker has main characteristic the easiness of manufacture and assembly, the low cost (was used material accessible composition to the low income communities) and simplicity in the mechanism of movement of the archetype for incidence of the direct solar light. They had been proposals modeling for calculations of food the minimum baking time, considering the following models of transference of heat in the transient state: object the halfinfinite, plain plate and the model of the sphere to study the necessary temperature for the it bakes of bread (considering spherical geometry). After evaluate the models of transmission of heat will be foods submitted you the processes of to it bakes of, the times gotten for the modeling with the experimental times of it bakes in the solar oven had been compared, demonstrating the modeling that more good that it portraies the accuracies of the results of the model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.