13 resultados para Sorgo biomassa
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
Arthropods are abundant organisms possess great wealth and diversity representing about 82% of all known animal species. Contribute as a source of biomass and their abundance is an indicator of ecological change. The aim of this study was to evaluate the biomass and abundance found in the salt marsh environment throughout the year and relate them to the climatic factors (temperature, precipitation and relative humidity) that can influence the abundance and biomass of arthropods. The study was conducted at the Centro de Lançamento de Foguetes Barreira do Inferno, city of Parnamirim, Rio Grande do Norte, in the period February 2011 to January 2012, using pitfall traps, stationary window and beating tray. Among the 26 orders found, the most abundant were: Hymenoptera, Orthoptera, Araneae. Taxa Hymenoptera, Blattodea and Orthoptera showed higher biomass volume. Climatic factors did not influence the fall of Arthropods in the traps, however, the lowest abundance during the rainy season the action of raindrops, reduced the activity of these arthropods on vegetation, reducing its capture in traps (pitfall traps and stationary window ) and method of collection(entomological umbrella)
Resumo:
It is verified worldwide an increasing concern with the protection of natural resources in the planet, a fact that became relevant in Brazil since the promulgation of the Constitution of 1988, based on the viewpoint of sustainable development, which seeks to promote economic activities in the country according to the need for conservation and preservation of natural resources for the use of present and future generations. In addition, we seek to reduce the differences that occur in our society by determining as a fundamental objective to be persecuted by the Federative Republic of Brazil the reduction of social and regional inequalities. A value that should also be observed in the context of economic activities developed here, since it is a general principle of financial and economic order of the country. Therefore, considering the exhaustion of world s reserves of fossil fuels, as well as the impacts on the environment, especially for the large emission of greenhouse effect gases, the debate about the need to change the global energy matrix increases while alternative energy sources appears as a bet to fulfill the contemporary aspirations for sustainability, and Brazil emerges in a very favorable position, because it has the essential natural conditions to allow this sector s full development. In this perspective, the work has the scope to analyze how the production of alternative energy sources may act in the search for concretization of constitutional values, to promote sustainable development for present and future generations, and to reduce regional and social inequalities in an attempt to improve the quality of life of the population. It will also be observed the current regulatory framework of alternative energy sources in the national laws to verify the existence of legal and institutional security, which is necessary to guarantee the full development of the sector in the country. And to investigate the expected results, it will be observed through the concrete evaluation of specific practices adopted in the industry, analyzing their actual compliance with the constitutional provisions under analysis, based on the examination of the possibility of using renewable biomass sources for biofuel production, promoting development to the country, indicating the opening lines about how this important sector can act to solve the energy challenge today
Resumo:
The omnivorous filter-feeding fish, Nile tilapia (Oreochromis niloticus), can have negative effects on water quality enhancing the eutrophication process. These effects depend on the nutrient enrichment level in the water. We carried out a mesocosm experiment for five weeks in a tropical man-made lake in Brazil to test ifthe effects of tilapias depend on of the level of nutrient enrichment. The experiment lasted for 5 weeks and a factorial 2x5 experimental design was used where the presence and absence of tilapias were manipulated in combination to 5 different levels of nutrient load in a total of 10 treatments. A two way repeated measure ANOVA was performed to evaluate the effects of time (t), tilapia (F), nutrients (NP) and the interactions among these factors on: chlorophyll a, water transparency, total phosphorous, total nitrogen, N:P ratio, zooplankton biomass and phytoplankton biovolume. The tilapia effect was evident, but nutrient enrichment didn t have any effect on the variables analyzed. Tilapia decreased the water transparency, total zooplankton biomass, calanoid copepod biomass, nauplii copepod biomass and cladocerans biomass. On the other hand, tilapia had no effect on phytoplankton biovolume. This lack of effect on phytoplankton is probably due to tilapia grazing that may counteract the positive effect of tilapia on phytoplankton via trophic cascades and nutrient recycling. Hence, a reduction in tilapia stock would not be an effective way to reduce phytoplankton biomass and improve water quality
Resumo:
The soil macrofauna is influenced to several biotic and abiotic environmental factors, from changes in the physical environment to a variety of interactions among the species involved, affecting the patterns of biodiversity of soil fauna. The power and specificity of the mechanisms that act on soil organisms vary greatly depending on environmental conditions at different scales of space and time. The Caatinga has great spatial heterogeneity of vegetation, climate and soil, so the soil macrofauna would follow this local spatial variation in the environment? This study aimed to investigate the effects of local environmental variables on biological parameters (taxa richness, total abundance and biomass) of soil macrofauna in a fragment of caatinga in João Câmara, Rio Grande Norte, Northeast Brazil. The study was conducted in the Cauaçu farm, where a grid of 2000m x 500m was drawn, and later, 30 sampling points were randomly selected. The methodology used to collect the macrofauna was the TSBF method. We tested the effects of 10 environmental variables on macrofauna across the plots and across the layers of soil. The hypothesis that macrofauna soil responds to changes in the environment was not supported throughout the plots, but was confirmed to soil layers. The soil macrofauna shows a pattern of concentration in the surface layer and decreases considerably in the deeper layers. This pattern had significant and positive relationship with the aerial plant biomass and fine root stock. The aerial plant biomass releases plant necromass that accumulates in the surface layer, providing an important source of resource and shelter for soil macrofauna, explaining their greater abundance in this layer. The roots are used as a means for the arrival of nutrients to the soil from the primary production, thus a greater amount of root conditions higher food intake for macrofauna, especially the herbivores
Resumo:
The adhesive mortars are a mixture of cement, sand, and additives to polymers that retain the mixing water and promotes adherence, being used in setting on various ceramic substrates. The sand used in the production of these mortars is from the riverbeds, and with the increasing restriction of these sands extraction by environmental agencies, and often having to be transported over long distances to the consumer center. This work aims to design and physical and mechanical characterization of ecological adhesive mortar with total replacement of natural sand by sand from the crushing of limestone, and the addition of mineral ash biomass of cane sugar in partial replacement cement used in the production of adhesive mortar , aiming compositions that meet the regulatory specifications for use adhesive mortar. Standardized tests to determine the tensile bond strength (NBR 14081-4), determination of open time (NBR 14081-3) and determination of slip (NBR 14081-5) were performed. Were also conducted trials squeeze flow in different formulation, the mortar with addition of 15 % gray biomass of cane sugar for cement mortars as well as the total replacement of natural sand by sand limestone crushing, got the best performance among the mortars studied, it was found that the addition of biomass to replace cement is perfectly feasible due to its pozzolanic activity, which contributed to this reduction in the cement matrix formation of adhesive mortar
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest
Resumo:
The main consequence of eutrophication is an increase in algal biomass, mainly cyanobacterial blooms. The high evaporation and low precipitation, characteristics of semiarid regions, contribute to the nutrients availability increase in drought periods and consequent aggravation of eutrophic condition in reservoirs. Climate changes tend to intensify eutrophication symptoms, mostly in a semiarid region. Therefore, the aim of this study was to evaluate the impact of an extended drought in algal biomass in Parelhas’s Boqueirão, a mesotrophic reservoir located in a semiarid tropical region. The low volume was associated to water quality degradation and to the high nutrients concentrations and low water transparency. The increase in nutrients availability in the water column, consequence of reduced precipitation and low reservoir’s volume, provided the necessary resources for algal growth and allowed a change in trophic state in Boqueirão reservoir. This study showed how an extended drought decreases water quality. The effect of drought in Boqueirão was late detected due to the reservoir´s low initial nutrients concentration. The reservoir´s volume reduction increased the nutrient availability along with the algal biomass increase and the reservoir´s trophic state change of mesotrophic to eutrophic.
Resumo:
Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures