2 resultados para Soil environmental factors.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The decomposition process exercises an extensive control over the carbon cycle, affecting its availability and nutrient cycling in terrestrial ecosystems. The understanding of leaf decomposition patterns above the soil and fine roots decomposition below the soil is necessary and essential to identify and quantify more accurately the flow of energy and matter in forest systems. There is still a lack of studies and a large gap in the knowledge about what environmental variables act as local determinants over decomposition drivers. The knowledge about the decomposition process is still immature for Brazilian semiarid region. The aim of this study was to analyze the decomposition process (on leaves and fine roots) of a mixture of three native species for 12 months in a semiarid ecosystem in Northeast Brazil. We also examined whether the rate of decomposition can be explained by local environmental factors, specifically plant species richness, plant density and biomass, soil macro-arthropods species richness and abundance, amount of litterfall and fine root stock. Thirty sampling points were randomly distributed within an area of 2000 m x 500 m. To determine the decomposition rate, the litterbag technique was used and the data analysis were made with multiple regressions. There was a high degradation of dead organic matter along the experiment. Above ground plant biomass was the only environmental local factor significantly related to leaf decomposition. The density of vegetation and litter production were positively and negatively related to decay rates of fine roots, respectively. The results suggest that Caatinga spatial heterogeneity may exert strong influences over the decomposition process, taking into account the action of environmental factors related to organic matter exposure of and the consequent action of solar radiation as the decomposition process main controller in this region
Resumo:
The soil macrofauna is influenced to several biotic and abiotic environmental factors, from changes in the physical environment to a variety of interactions among the species involved, affecting the patterns of biodiversity of soil fauna. The power and specificity of the mechanisms that act on soil organisms vary greatly depending on environmental conditions at different scales of space and time. The Caatinga has great spatial heterogeneity of vegetation, climate and soil, so the soil macrofauna would follow this local spatial variation in the environment? This study aimed to investigate the effects of local environmental variables on biological parameters (taxa richness, total abundance and biomass) of soil macrofauna in a fragment of caatinga in João Câmara, Rio Grande Norte, Northeast Brazil. The study was conducted in the Cauaçu farm, where a grid of 2000m x 500m was drawn, and later, 30 sampling points were randomly selected. The methodology used to collect the macrofauna was the TSBF method. We tested the effects of 10 environmental variables on macrofauna across the plots and across the layers of soil. The hypothesis that macrofauna soil responds to changes in the environment was not supported throughout the plots, but was confirmed to soil layers. The soil macrofauna shows a pattern of concentration in the surface layer and decreases considerably in the deeper layers. This pattern had significant and positive relationship with the aerial plant biomass and fine root stock. The aerial plant biomass releases plant necromass that accumulates in the surface layer, providing an important source of resource and shelter for soil macrofauna, explaining their greater abundance in this layer. The roots are used as a means for the arrival of nutrients to the soil from the primary production, thus a greater amount of root conditions higher food intake for macrofauna, especially the herbivores