6 resultados para Software assets

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software Product Line (SPL) consists of a software development paradigm, whose main focus is to identify features common and variability among applications in a specific domain. An LPS is designed to attend all products requirements from its product family. These requirements and LPS may have changes over time due to several factors, such as evolution of product requirements, evolution of the market, evolution of SLP process, evolution of the technologies used to develop the products. To handle these changes, LPS should be modified and evolve in order to not become obsolete, and adapt itself to new requirements. The Changes Impact Analysis is an activity that understand and identify what consequences these changes are cause on LPS. Impact Analysis on LPS may be supported by traceability relationships, which identify relationships between artefacts created during all phases of software development. Despite the solutions of change impact analysis based on traceability for software, there is a lack of solutions for assessing the change impact analysis based on traceability for LPS, since existing solutions do not include estimates specific to the artefacts of LPS. Thus, this paper proposes a process of change impact analysis and an tool for assessing the change impact through traceability of artefacts in LPS. For this purpose, we specified a process of change impact analysis that considers artifacts produced during the development of LPS. We have also implemented a tool which allows estimating and identifying artefacts and products of LPS affected from changes in other products, changes in class, changes in features, changes between releases of LPS and artefacts related to changes in core assets and variability. Finally, the results were evaluated through metrics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A great challenge of the Component Based Development is the creation of mechanisms to facilitate the finding of reusable assets that fulfill the requirements of a particular system under development. In this sense, some component repositories have been proposed in order to answer such a need. However, repositories need to represent the asset characteristics that can be taken into account by the consumers when choosing the more adequate assets for their needs. In such a context, the literature presents some models proposed to describe the asset characteristics, such as identification, classification, non-functional requirements, usage and deployment information and component interfaces. Nevertheless, the set of characteristics represented by those models is insufficient to describe information used before, during and after the asset acquisition. This information refers to negotiation, certification, change history, adopted development process, events, exceptions and so on. In order to overcome this gap, this work proposes an XML-based model to represent several characteristics, of different asset types, that may be employed in the component-based development. Besides representing metadata used by consumers, useful for asset discovering, acquisition and usage, this model, called X-ARM, also focus on helping asset developers activities. Since the proposed model represents an expressive amount of information, this work also presents a tool called X-Packager, developed with the goal of helping asset description with X-ARM

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Exception Handling (EH) is a widely used mechanism for building robust systems. In Software Product Line (SPL) context it is not different. As EH mechanisms are embedded in most of mainstream programming languages (like Java, C# and C++), we can find exception signalers and handlers spread over code assets associated to common and variable SPL features. When exception signalers and handlers are added to an SPL in an unplanned way, one of the possible consequences is the generation of faulty family instances (i.e., instances on which common or variable features signal exceptions that are mistakenly caught inside the system). In this context, some questions arise: How exceptions flow between the optional and alternative features an LPS? Aiming at providing answers to these questions, this master thesis conducted an exploratory study, based on code inspection and static analysis code, whose goal was to categorize the main ways which exceptions flow in LPSs. To support the study, we developed an static analysis tool called PLEA (Product Line Exception Analyzer) that calculates the exceptional flows of LPSs, and categorize these flows according to the features associated with handlers and signalers. Preliminary results showed that some types of exceptional flows have more potential to yield failures in exceptional behavior of SLPs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software Products Lines (SPL) is a software engineering approach to developing software system families that share common features and differ in other features according to the requested software systems. The adoption of the SPL approach can promote several benefits such as cost reduction, product quality, productivity, and time to market. On the other hand, the SPL approach brings new challenges to the software evolution that must be considered. Recent research work has explored and proposed automated approaches based on code analysis and traceability techniques for change impact analysis in the context of SPL development. There are existing limitations concerning these approaches such as the customization of the analysis functionalities to address different strategies for change impact analysis, and the change impact analysis of fine-grained variability. This dissertation proposes a change impact analysis tool for SPL development, called Squid Impact Analyzer. The tool allows the implementation of change impact analysis based on information from variability modeling, mapping of variability to code assets, and existing dependency relationships between code assets. An assessment of the tool is conducted through an experiment that compare the change impact analysis results provided by the tool with real changes applied to several evolution releases from a SPL for media management in mobile devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.