3 resultados para Sodium sulphate test
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Chitosan is a polymer biocompatibility and biodegradability widely used in drug delivery systems. The co-crosslinking of chitosan with sodium sulfate and genipin, to form particulate systems is related of making them more resistant to acidic pH and to modulate the release kinetics for the oral route. Triamcinolone is a glucocorticoid with anti-inflammatory and immunosuppressive actions. The nanoparticles were prepared by co-crosslinking and characterized for particle size, PDI, zeta potential, crosslinking degree, encapsulation rate, morphology, infrared spectroscopy, thermal analysis, release kinetics and cells studies. The nanoparticles were prepared initially without genipin with sodium sulphate and the particles parameters were monitored in function of different ratio of drug / polymer, different concentrations of sodium sulfate and polysorbate 80 and the drip mode of crosslinkers on polymers. After optimizing conditions, the chosen system parameters without genipin included mean diameter of 312.20 ± 5.70 nm, PDI 0.342 ± 0.013 and zeta potential of 20.18 ± 2.28 mV. The genipin was introduced into the system analyzing different concentrations (0.5, 1.0 and 2.0 mM) and crosslinking times (3, 6, 12 and 24 h). Evaluating crosslinking time with genipin (0.5 mM) it was showed that varying the genipin reaction time the systems size ranged from 235.1 to 334.4 nm, the PDI from 0.321 to 0.392 and zeta potential 20.92 to 30.39 mV. The crosslinking degree that coud vary from 14 to 30 %. Nanoparticles without genipina, 6 h and 24 h crosslinking time were dried by spray-drying method. Analysis by scanning electron micrograph (SEM) revealed that the microparticles showed spherical morphology. The encapsulation rate was 75 ± 2.3 % using validated HPLC methodology. The infrared analysis showed chemical interactions between the components of the formulation. Thermal analysis showed that systems with a higher degree of crosslinking had a higher thermal stability. On release kinetics, increasing the degree of crosslinking was able to decrease the concentration and rate of release of triamcinolone. In studies with liver cancer cells (HepG2) and colon (HT-29), the microparticulate prepared with triamcinolone and 24 h of crosslinking with genipin showed a potential for antitumor activity in hepatic cell line HepG2. Therefore, a new delivery system for triamcinolone on polymeric nanoparticles of chitosan cocrosslinked with genipin and sodium sulfate was obtained with hepatic antitumor potential.
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated