10 resultados para Sodium carbonate
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use
Resumo:
In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
The diatomite is a natural material that has numerous applications due to changes in their physical and chemical properties after processing. It is currently used in the industry as a sound insulator , filter aid and industrial load . The filter material shall be inert chemical composition , which will diatomite confers a high commercial value and performance not found in other particulate materials , for this application. The diatomite surface undergoes changes after thermal treatment at high temperatures , from 800ºC , with properties that enable its application in the food , beverage , pharmaceutical , cosmetic and textiles . In this work , we developed a study on thermal treatment on natural diatomite to adapt their properties to the application as a filter aid . The heat treatments were performed in an open oven at temperatures of 800ºC , 1000ºC and 1200ºC for a time of 24 hours. Reagents were added in the constitution of the samples analyzed. The reagents used were sodium carbonate (Na2CO3 ) and sodium chloride (NaCl) . The samples were characterized by x - ray diffraction , x -ray fluorescence , scanning electron microscopy , analysis and particle size distribution , specific surface area by the BET method , and pore volume by BJH method. The results showed a reduction in porosity of the material as well as a significant increase in specific surface area after heat treatment and the reactants in the ratio of 3 wt%. The diatomaceous earth , after heat treatment , undergone changes in its coloration , varying in white, cream and beige , which directly interferes with the speed of filtration materials process. All results obtained before and after heat treatment of the material with the values obtained for samples already used industrially , Brazilian and American industry , which were characterized using the same test methods performed with the samples in the study were compared and showed promising efficiency when material studied in the region of Punaú - RN , after processing , reagent addition and heat treatment, as an element in the composition of filter .
Resumo:
SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.
Resumo:
Benznidazole, a drug with specific anti-Trypanosoma cruzi activity, is used in the treatment of Chagas’ disease. The radiopharmaceutical sodium pertechnetate (Na99mTcO4) is used to obtain diagnostic images of the stomach, thyroid, parathyroids, salivary glands, brain and in the study of esophageal reflux and blood flow. This study aimed at evaluating in vivo the influence of benznidazole treatment on the sodium pertechnetate biodistribution in Wistar rats. The percentage of radioactivity per gram (%ATI/g) of various organs (brain, heart, esophagus, stomach, small intestine, large intestine, spleen, liver, muscle and blood) was determined. Comparing the treated rats with the controls, we observed that sodium pertechnetate biodistribution did not change when administered to rats treated for thirty days with benznidazole
Resumo:
Study with the purpose to examine the effects of duodenal switch (DS), regularly performed in morbidly obese patients, on biodistribution of sodium pertechnetate in several organs of rats. There was no early or late mortality in either rats groups. The values of percent radioactivity per gram of tissue (%ATI/g), showed no significant difference in liver, stomach, small bowel, duodenum, kidney, heart, bladder, bone and brain, when compared the DS rats with sham and controls rats. A postoperative significant increase (p<0.05) in mean %ATI/g levels was observed in spleen, pancreas and muscle in group DS rats, as compared to group S and C rats. In the lung there was an increase and in thyroid a decrease in mean %ATI/g of DS rats, when compared to sham rats (p<0.05). In conclusion, the biliopancreatic diversion with duodenal switch in rats modified the biodistribution of sodium pertechnetate in thyroid, lung, pancreas, spleen and muscle
Resumo:
Drugs and surgery can interfere with the biodistribution of radiopharmaceuticals and data about the effect of splenectomy on the metabolism of phytate-Tc-99m are scarce. This study aimed at evaluating the interference of splenectomy on phytate-Tc-99m biodistribution and liver function in rats. The SP group rats (n=6) underwent splenectomy. In group C (control) the animals were not operated on. After 15 days, all rats were injected with 0.1mL of Tc-99m-phytate via orbital plexus (0.66MBq). After 30 minutes, liver samples were harvested, weighed and the percentage of radioactivity per gram (%ATI-g) was determined by a Wizard Perkin-Elme gama counter. The ATI%-g in splenectomized rats (0.99±0.02) was significantly higher than in controls (0.4±0.02), (p=0.034). ALT, AST and HDL were significantly lower in SP rats (p= 0.001) and leukocytosis was observed in SP rats. In conclusion, splenectomy in rats changed the hepatic biodistribution of Tc-99m-phytate and liver enzimatic activity
Resumo:
To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. Methods: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI-g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as signifi cant. Results: There were no signifi cant differences in %ATI-g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was signifi cantly greater than that of C and sham rats (p<0.05). Conclusion: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated
Resumo:
The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium