3 resultados para Sl 19
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The generation of effluent from the finishing process in textile industry is a serious environmental problem and turned into an object of study in several scientific papers. Contamination with dyes and the presences of substances that are toxic to the environment characterize this difficult treatment effluent. Several processes have already been evaluated to remove and even degrade such pollutants are examples: coagulation-flocculation, biological treatment and advanced oxidative processes, but not yet sufficient to enable the recovery of dye or at least of the recovery agent. An alternative to this problem is the cloud point extraction that involves the application of nonionic surfactants at temperatures above the cloud point, making the water a weak solvent to the surfactant, providing the agglomeration of those molecules around the dyes molecules by affinity with the organic phase. After that, the formation of two phases occurred: the diluted one, poor in dye and surfactant, and the other one, coacervate, with higher concentrations of dye and surfactants than the other one. The later use of the coacervate as a dye and surfactant recycle shows the technical and economic viability of this process. In this paper, the cloud point extraction is used to remove the dye Reactive Blue from the water, using nonionic surfactant nonyl phenol with 9,5 etoxilations. The aim is to solubilize the dye molecules in surfactant, varying the concentration and temperature to study its effects. Evaluating the dye concentration in dilute phase after extraction, it is possible to analyze thermodynamic variables, build Langmuir isotherms, determine the behavior of the coacervate volume for a surfactant concentration and temperature, the distribution coefficient and the dye removal efficiency. The concentration of surfactant proved itself to be crucial to the success of the treatment. The results of removal efficiency reached values of 91,38%, 90,69%, 89,58%, 87,22% and 84,18% to temperatures of 65,0, 67,5, 70,0, 72,5 and 75,0°C, respectively, showing that the cloud point extraction is an efficient alternative for the treatment of wastewater containing Reactive Blue
Resumo:
The purpose of this study was evaluate the effectiveness of the chitosan at 0.4 with high molecular weight and high deacetylation degree mouthrinse over the total decrease of the streptococci, Streptococcus mutans, lactobaci/li and over the perceptible bacterial film and gingival bleeding indices. For that, a total of 68 healthy students between 11 and 13 years old, not allergic to crustacean and not users of antibiotics or antimicrobial agent for the last three months or during the treatment, was selected. From those, thirty two individuaIs used the mouthrinse test, and thirty six, the control one. The participants rinsed 10 mL of the solutions twice a day, one during the moming (which was supervised), and another one during the aftemoon (which was not supervised), for fifteen days. The saliva collect for the microbiological analysis, as well as the perceptible bacterial film and gingival bleeding indices check, were made before the use ofthe mouthrinses (base line), immediately after the last mouthrinse on the day (zero time) and fifteen days after (fifteen time). These data were collected at school and the saliva was carried inside the ice to the laboratory. The samples were diluted, and 0.1 mL ofthe 10 -1 dilution was seeded in Rogosa SL agar, for further analysis of the total of lactobaci/lus~ 0.1 mL of the 10-4 dilution in Mitis Salivarius with bacitracin, for S. mutans analysis; and 0.1 mL of the 10-6 dilution in Mitis Salivarius for the analysis ofthe total of streptococcus. The Rogosa SL agar plates were incubated in aerobic at 37°C for 72 hours and the MSB and the MS were incubated in anaerobic in Gaspak@ jars at 37°C for 48 hours for further count ofColonies Former Units (CFUs). The assay was made in duplicate for each bacterial group analyzed. The number of CFUs transformed in LOGlO was analyzed according to the following tests: ANOV A, t of Paired and Not Paired Student, Friedman, Man-Whitney and square-qui test. On the base line, alI the variables analyzed were similar on both tested groups. On both groups, for the total of streptococcus there was no significant difference along the time and for S. mutans there was a statistic significant increase of the CFUs from the base line to the zero time. For the total of lactobaccilus there was no significant difference on the test group along the time, and on the control there was a significant increase ofthe CFUs ITom the base line to the zero time. For both groups, there was significant decrease ofthe perceptible bacterial film index along the time, and that can be explained by the mechanic effect of the mouthrinse over the bacterial film and by the participation of the students on the research which could have motivated him to a better toothbrushing (Hawthome effect). The gingival bleeding index also showed a decrease along the time, even though it was not significant. Therefore, the conclusion of this study was that the chitosan at 0.4 % mouthrinse was not effective on the CFUs reduction of the three bacterial groups analyzed, as well as on the reduction of the perceptible bacterial film and gingival bleeding indices
Resumo:
Lucid dreaming (LD) is a mental state in which the subject is aware of being dreaming while dreaming. The prevalence of LD among Europeans, North Americans and Asians is quite variable (between 26 and 92%) (Stepansky et al., 1998; Schredl & Erlacher, 2011; Yu, 2008); in Latin Americans it is yet to be investigated. Furthermore, the neural bases of LD remain controversial. Different studies have observed that LD presents power increases in the alpha frequency band (Tyson et al., 1984), in beta oscillations recorded from the parietal cortex (Holzinger et al., 2006) and in gamma rhythm recorded from the frontal cortex (Voss et al., 2009), in comparison with non-lucid dreaming. In this thesis we report epidemiological and neurophysiological investigations of LD. To investigate the epidemiology of LD (Study 1), we developed an online questionnaire about dreams that was answered by 3,427 volunteers. In this sample, 56% were women, 24% were men and 20% did not inform their gender (the median age was 25 years). A total of 76.5% of the subjects reported recalling dreams at least once a week, and about two-thirds of them reported dreaming always in the first person, i.e. when the dreamer observes the dream from within itself, not as another dream character. Dream reports typically depicted actions (93.3%), known people (92.9%), sounds/voices (78.5%), and colored images (76.3%). The oneiric content was related to plans for upcoming days (37.8%), and memories of the previous day (13.8%). Nightmares were characterized by general anxiety/fear (65.5%), feeling of being chased (48.5%), and non-painful unpleasant sensations (47.6%). With regard to LD, 77.2% of the subjects reported having experienced LD at least once in their lifetime (44.9% reported up to 10 episodes ever). LD frequency was weakly correlated with dream recall frequency (r = 0.20, p <0.001) and was higher in men (χ2=10.2, p=0.001). The control of LD was rare (29.7%) and inversely correlated with LD duration (r=-0.38, p <0.001), which is usually short: to 48.5% of the subjects, LD takes less than 1 minute. LD occurrence is mainly associated with having sleep without a fixed time to wake up (38.3%), which increases the chance of having REM sleep (REMS). LD is also associated with stress (30.1%), which increases REMS transitions into wakefulness. Overall, the data suggest that dreams and nightmares can be evolutionarily understood as a simulation of the common situations that happen in life, and that are related to our social, psychological and biological integrity. The results also indicate that LD is a relatively common experience (but not recurrent), often elusive and difficult to control, suggesting that LD is an incomplete stationary stage (or phase transition) between REMS and wake state. Moreover, despite the variability of LD prevalence among North Americans, Europeans and Asians, our data from Latin Americans strengthens the notion that LD is a general phenomenon of the human species. To further investigate the neural bases of LD (Study 2), we performed sleep recordings of 32 non-frequent lucid dreamers (sample 1) and 6 frequent lucid dreamers (sample 2). In sample 1, we applied two cognitive-behavioral techniques to induce LD: presleep LD suggestion (n=8) and light pulses applied during REMS (n=8); in a control group we made no attempt to influence dreaming (n=16). The results indicate that it is quite difficult but still possible to induce LD, since we could induce LD in a single subject, using the suggestion technique. EEG signals from this one subject exhibited alpha (7-14 Hz) bursts prior to LD. These bursts were brief (about 3s), without significant change in muscle tone, and independent of the presence of rapid eye movements. No such bursts were observed in the remaining 31 subjects. In addition, LD exhibited significantly higher occipital alpha and right temporo-parietal gamma (30-50 Hz) power, in comparison with non-lucid REMS. In sample 2, LD presented increased frontal high-gamma (50-100 Hz) power on average, in comparison with non-lucid REMS; however, this was not consistent across all subjects, being a clear phenomenon in just one subject. We also observed that four of these volunteers showed an increase in alpha rhythm power over the occipital region, immediately before or during LD. Altogether, our preliminary results suggest that LD presents neurophysiological characteristics that make it different from both waking and the typical REMS. To the extent that the right temporo-parietal and frontal regions are related to the formation of selfconsciousness and body internal image, we suggest that an increased activity in these regions during sleep may be the neurobiological mechanism underlying LD. The alpha rhythm bursts, as well as the alpha power increase over the occipital region, may represent micro-arousals, which facilitate the contact of the brain during sleep with the external environment, favoring the occurrence of LD. This also strengthens the notion that LD is an intermediary state between sleep and wakefulness