30 resultados para Sistemas multi-robôs

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although some individual techniques of supervised Machine Learning (ML), also known as classifiers, or algorithms of classification, to supply solutions that, most of the time, are considered efficient, have experimental results gotten with the use of large sets of pattern and/or that they have a expressive amount of irrelevant data or incomplete characteristic, that show a decrease in the efficiency of the precision of these techniques. In other words, such techniques can t do an recognition of patterns of an efficient form in complex problems. With the intention to get better performance and efficiency of these ML techniques, were thought about the idea to using some types of LM algorithms work jointly, thus origin to the term Multi-Classifier System (MCS). The MCS s presents, as component, different of LM algorithms, called of base classifiers, and realized a combination of results gotten for these algorithms to reach the final result. So that the MCS has a better performance that the base classifiers, the results gotten for each base classifier must present an certain diversity, in other words, a difference between the results gotten for each classifier that compose the system. It can be said that it does not make signification to have MCS s whose base classifiers have identical answers to the sames patterns. Although the MCS s present better results that the individually systems, has always the search to improve the results gotten for this type of system. Aim at this improvement and a better consistency in the results, as well as a larger diversity of the classifiers of a MCS, comes being recently searched methodologies that present as characteristic the use of weights, or confidence values. These weights can describe the importance that certain classifier supplied when associating with each pattern to a determined class. These weights still are used, in associate with the exits of the classifiers, during the process of recognition (use) of the MCS s. Exist different ways of calculating these weights and can be divided in two categories: the static weights and the dynamic weights. The first category of weights is characterizes for not having the modification of its values during the classification process, different it occurs with the second category, where the values suffers modifications during the classification process. In this work an analysis will be made to verify if the use of the weights, statics as much as dynamics, they can increase the perfomance of the MCS s in comparison with the individually systems. Moreover, will be made an analysis in the diversity gotten for the MCS s, for this mode verify if it has some relation between the use of the weights in the MCS s with different levels of diversity

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advent of the Internet stimulated the appearance of several services. An example is the communication ones present in the users day-by-day. Services as chat and e-mail reach an increasing number of users. This fact is turning the Net a powerful communication medium. The following work explores the use of communication conventional services into the Net infrastructure. We introduce the concept of communication social protocols applied to a shared virtual environment. We argue that communication tools have to be adapted to the Internet potentialities. To do that, we approach some theories of the Communication area and its applicability in a virtual environment context. We define multi-agent architecture to support the offer of these services, as well as, a software and hardware platform to support the accomplishment of experiments using Mixed Reality. Finally, we present the obtained results, experiments and products

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we propose a multi agent system for digital image steganalysis, based on the poliginic bees model. Such approach aims to solve the problem of automatic steganalysis for digital media, with a case study on digital images. The system architecture was designed not only to detect if a file is suspicious of covering a hidden message, as well to extract the hidden message or information regarding it. Several experiments were performed whose results confirm a substantial enhancement (from 67% to 82% success rate) by using the multi-agent approach, fact not observed in traditional systems. An ongoing application using the technique is the detection of anomalies in digital data produced by sensors that capture brain emissions in little animals. The detection of such anomalies can be used to prove theories and evidences of imagery completion during sleep provided by the brain in visual cortex areas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of intelligent agents in multi-classifier systems appeared in order to making the centralized decision process of a multi-classifier system into a distributed, flexible and incremental one. Based on this, the NeurAge (Neural Agents) system (Abreu et al 2004) was proposed. This system has a superior performance to some combination-centered methods (Abreu, Canuto, and Santana 2005). The negotiation is important to the multiagent system performance, but most of negotiations are defined informaly. A way to formalize the negotiation process is using an ontology. In the context of classification tasks, the ontology provides an approach to formalize the concepts and rules that manage the relations between these concepts. This work aims at using ontologies to make a formal description of the negotiation methods of a multi-agent system for classification tasks, more specifically the NeurAge system. Through ontologies, we intend to make the NeurAge system more formal and open, allowing that new agents can be part of such system during the negotiation. In this sense, the NeurAge System will be studied on the basis of its functioning and reaching, mainly, the negotiation methods used by the same ones. After that, some negotiation ontologies found in literature will be studied, and then those that were chosen for this work will be adapted to the negotiation methods used in the NeurAge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of multi-agent systems for classification tasks has been proposed in order to overcome some drawbacks of multi-classifier systems and, as a consequence, to improve performance of such systems. As a result, the NeurAge system was proposed. This system is composed by several neural agents which communicate and negotiate a common result for the testing patterns. In the NeurAge system, a negotiation method is very important to the overall performance of the system since the agents need to reach and agreement about a problem when there is a conflict among the agents. This thesis presents an extensive analysis of the NeurAge System where it is used all kind of classifiers. This systems is now named ClassAge System. It is aimed to analyze the reaction of this system to some modifications in its topology and configuration

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tectonics activity on the southern border of Parnaíba Basin resulted in a wide range of brittle structures that affect siliciclastic sedimentary rocks. This tectonic activity and related faults, joints, and folds are poorly known. The main aims of this study were (1) to identify lineaments using several remotesensing systems, (2) to check how the interpretation based on these systems at several scales influence the identification of lineaments, and (3) to contribute to the knowledge of brittle tectonics in the southern border of the Parnaíba Basin. The integration of orbital and aerial systems allowed a multi-scale identification, classification, and quantification of lineaments. Maps of lineaments were elaborated in the following scales: 1:200,000 (SRTM Shuttle Radar Topographic Mission), 1:50,000 (Landsat 7 ETM+ satellite), 1:10,000 (aerial photographs) and 1:5,000 (Quickbird satellite). The classification of the features with structural significance allowed the determination of four structural sets: NW, NS, NE, and EW. They were usually identified in all remote-sensing systems. The NE-trending set was not easily identified in aerial photographs but was better visualized on images of medium-resolution systems (SRTM and Landsat 7 ETM+). The same behavior characterizes the NW-trending. The NS-and EW-trending sets were better identified on images from high-resolution systems (aerial photographs and Quickbird). The structural meaning of the lineaments was established after field work. The NEtrending set is associated with normal and strike-slip faults, including deformation bands. These are the oldest structures identified in the region and are related to the reactivation of Precambrian basement structures from the Transbrazilian Lineament. The NW-trending set represents strike-slip and subordinated normal faults. The high dispersion of this set suggests a more recent origin than the previous structures. The NW-trending set may be related to the Picos-Santa Inês Lineament. The NS-and EW-trending sets correspond to large joints (100 m 5 km long). The truncation relationships between these joint sets indicate that the EW-is older than the NS-trending set. The methodology developed by the present work is an excellent tool for the understanding of the regional and local tectonic structures in the Parnaíba basin. It helps the choice of the best remote-sensing system to identify brittle features in a poorly known sedimentary basin

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose methodologies and computer tools to insert robots in cultural environments. The basic idea is to have a robot in a real context (a cultural space) that can represent an user connected to the system through Internet (visitor avatar in the real space) and that the robot also have its representation in a Mixed Reality space (robot avatar in the virtual space). In this way, robot and avatar are not simply real and virtual objects. They play a more important role in the scenery, interfering in the process and taking decisions. In order to have this service running, we developed a module composed by a robot, communication tools and ways to provide integration of these with the virtual environment. As welI we implemented a set of behaviors with the purpose of controlling the robot in the real space. We studied available software and hardware tools for the robotics platform used in the experiments, as welI we developed test routines to determine their potentialities. Finally, we studied the behavior-based control model, we planned and implemented alI the necessary behaviors for the robot integration to the real and virtual cultural spaces. Several experiments were conducted, in order to validate the developed methodologies and tools

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postsurgical complication of hypertension may occur in cardiac patients. To decrease the chances of complication it is necessary to reduce elevated blood pressure as soon as possible. Continuous infusion of vasodilator drugs, such as sodium nitroprusside (Nipride), would quickly lower the blood pressure in most patients. However, each patient has a different sensitivity to infusion of Nipride. The parameters and the time delays of the system are initially unknown. Moreover, the parameters of the transfer function associated with a particular patient are time varying. the objective of the study is to develop a procedure for blood pressure control i the presence of uncertainty of parameters and considerable time delays. So, a methodology was developed multi-model, and for each such model a Preditive Controller can be a priori designed. An adaptive mechanism is then needed for deciding which controller should be dominant for a given plant