2 resultados para Sistemas de certificação de café
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays due to the security vulnerability of distributed systems, it is needed mechanisms to guarantee the security requirements of distributed objects communications. Middleware Platforms component integration platforms provide security functions that typically offer services for auditing, for guarantee messages protection, authentication, and access control. In order to support these functions, middleware platforms use digital certificates that are provided and managed by external entities. However, most middleware platforms do not define requirements to get, to maintain, to validate and to delegate digital certificates. In addition, most digital certification systems use X.509 certificates that are complex and have a lot of attributes. In order to address these problems, this work proposes a digital certification generic service for middleware platforms. This service provides flexibility via the joint use of public key certificates, to implement the authentication function, and attributes certificates to the authorization function. It also supports delegation. Certificate based access control is transparent for objects. The proposed service defines the digital certificate format, the store and retrieval system, certificate validation and support for delegation. In order to validate the proposed architecture, this work presents the implementation of the digital certification service for the CORBA middleware platform and a case study that illustrates the service functionalities
Resumo:
This thesis presents a certification method for semantic web services compositions which aims to statically ensure its functional correctness. Certification method encompasses two dimensions of verification, termed base and functional dimensions. Base dimension concerns with the verification of application correctness of the semantic web service in the composition, i.e., to ensure that each service invocation given in the composition comply with its respective service definition. The certification of this dimension exploits the semantic compatibility between the invocation arguments and formal parameters of the semantic web service. Functional dimension aims to ensure that the composition satisfies a given specification expressed in the form of preconditions and postconditions. This dimension is formalized by a Hoare logic based calculus. Partial correctness specifications involving compositions of semantic web services can be derived from the deductive system proposed. Our work is also characterized by exploiting the use of a fragment of description logic, i.e., ALC, to express the partial correctness specifications. In order to operationalize the proposed certification method, we developed a supporting environment for defining the semantic web services compositions as well as to conduct the certification process. The certification method were experimentally evaluated by applying it in three different proof concepts. These proof concepts enabled to broadly evaluate the method certification