123 resultados para Sistema de comando e controle
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
With the technological progress the people are more and more looking for convenience, comfort and safety to your homes. The residential automation is winning space on the market not only by the status and modernity that provide, but also to allow a better use of natural resources, reducing the expense to keep up a residence. This work shows the development of a control system and supervision to be destined to the residential automation. The developed software will be working together with a controller (PLC), acting in the administration, control and supervision all the linked devices, and offering to the user an environment simple and practical for the control residence
Resumo:
Hypertension is a dangerous disease that can cause serious harm to a patient health. In some situations the necessity to control this pressure is even greater, as in surgical procedures and post-surgical patients. To decrease the chances of a complication, it is necessary to reduce blood pressure as soon as possible. Continuous infusion of vasodilators drugs, such as sodium nitroprusside (SNP), rapidly decreased blood pressure in most patients, avoiding major problems. Maintaining the desired blood pressure requires constant monitoring of arterial blood pressure and frequently adjusting the drug infusion rate. Manual control of arterial blood pressure by clinical personnel is very demanding, time consuming and, as a result, sometimes of poor quality. Thus, the aim of this work is the design and implementation of a database of tuned controllers based on patients models, in order to find a suitable PID to be embedded in a Programmable Integrated Circuit (PIC), which has a smaller cost, smaller size and lower power consumption. For best results in controlling the blood pressure and choosing the adequate controller, tuning algorithms, system identification techniques and Smith predictor are used. This work also introduces a monitoring system to assist in detecting anomalies and optimize the process of patient care.
Resumo:
A major and growing problems faced by modern society is the high production of waste and related effects they produce, such as environmental degradation and pollution of various ecosystems, with direct effects on quality of life. The thermal treatment technologies have been widely used in the treatment of these wastes and thermal plasma is gaining importance in processing blanketing. This work is focused on developing an optimized system of supervision and control applied to a processing plant and petrochemical waste effluents using thermal plasma. The system is basically composed of a inductive plasma torch reactors washing system / exhaust gases and RF power used to generate plasma. The process of supervision and control of the plant is of paramount importance in the development of the ultimate goal. For this reason, various subsidies were created in the search for greater efficiency in the process, generating events, graphics / distribution and storage of data for each subsystem of the plant, process execution, control and 3D visualization of each subsystem of the plant between others. A communication platform between the virtual 3D plant architecture and a real control structure (hardware) was created. The goal is to use the concepts of mixed reality and develop strategies for different types of controls that allow manipulating 3D plant without restrictions and schedules, optimize the actual process. Studies have shown that one of the best ways to implement the control of generation inductively coupled plasma techniques is to use intelligent control, both for their efficiency in the results is low for its implementation, without requiring a specific model. The control strategy using Fuzzy Logic (Fuzzy-PI) was developed and implemented, and the results showed satisfactory condition on response time and viability
Resumo:
The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system
Resumo:
This study aims at the design, development and performance evaluation of a flat platform to capture incident solar radiation. The design and implementation of a fuzzy system for the efficient control of the solar tracking movement of the platform are also presented
Resumo:
In the operational context of industrial processes, alarm, by definition, is a warning to the operator that an action with limited time to run is required, while the event is a change of state information, which does not require action by the operator, therefore should not be advertised, and only stored for analysis of maintenance, incidents and used for signaling / monitoring (EEMUA, 2007). However, alarms and events are often confused and improperly configured similarly by developers of automation systems. This practice results in a high amount of pseudo-alarms during the operation of industrial processes. The high number of alarms is a major obstacle to improving operational efficiency, making it difficult to identify problems and increasing the time to respond to abnormalities. The main consequences of this scenario are the increased risk to personal safety, facilities, environment deterioration and loss of production. The aim of this paper is to present a philosophy for setting up a system of supervision and control, developed with the aim of reducing the amount of pseudo-alarms and increase reliability of the information that the system provides. A real case study was conducted in the automation system of the offshore production of hydrocarbons from Petrobras in Rio Grande do Norte, in order to validate the application of this new methodology. The work followed the premises of the tool presented in ISA SP18.2. 2009, called "life cycle alarm . After the implementation of methodology there was a significant reduction in the number of alarms
Resumo:
A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes
Resumo:
In the operational context of industrial processes, alarm, by definition, is a warning to the operator that an action with limited time to run is required, while the event is a change of state information, which does not require action by the operator, therefore should not be advertised, and only stored for analysis of maintenance, incidents and used for signaling / monitoring (EEMUA, 2007). However, alarms and events are often confused and improperly configured similarly by developers of automation systems. This practice results in a high amount of pseudo-alarms during the operation of industrial processes. The high number of alarms is a major obstacle to improving operational efficiency, making it difficult to identify problems and increasing the time to respond to abnormalities. The main consequences of this scenario are the increased risk to personal safety, facilities, environment deterioration and loss of production. The aim of this paper is to present a philosophy for setting up a system of supervision and control, developed with the aim of reducing the amount of pseudo-alarms and increase reliability of the information that the system provides. A real case study was conducted in the automation system of the offshore production of hydrocarbons from Petrobras in Rio Grande do Norte, in order to validate the application of this new methodology. The work followed the premises of the tool presented in ISA SP18.2. 2009, called "life cycle alarm . After the implementation of methodology there was a significant reduction in the number of alarms
Resumo:
The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective
Resumo:
Esta tesis trata de discutir y entender los diversos tipos de redes sociales y formas de interacción social presentes en el sistema penitenciario de Rio Grande do Norte. Nuestro problema se basa en un incremento significativo en las tasas de encarcelamiento y la prisión en Brasil y el mundo en los últimos diez años. Asimismo, la aparición del crimen organizado ya, en cierta medida, el control de las prisiones brasileñas, como el Comando Vermelho (CV) y el Primeiro Comando da Capital (PCC), una consecuencia directa de las terribles condiciones de las prisiones de Brasil y aumento de la violencia y el crimen en nuestro país. Para resolver el problema, se optó por utilizar las categorías de análisis de Michel Foucault (prisión y la disciplina), Pierre Bourdieu (habitus y campo), Ervirng Goffman (institución total, de interacción, de fachada y de equipo) y Mark Granovetter, Ricardo Abramovay e João Peixoto, entre otros, la nueva sociología económica (Redes, nodos y lazos) como principal apoyo. También construyó una revisión histórica de la cárcel en Brasil y Rio Grande do Norte hasta llegar al objeto. Esto, en términos de investigación cualitativa, se sumergió en el mundo de las prisiones Dr. Francisco Nogueira Fernandes, conocido como Penitenciario de Alcaçuz, ubicado en el municipio de Nísia Bosque, Rio Grande do Norte. Penitenciaría del Estado de origen, las casas de Alcaçuz seiscientos cuarenta y tres reclusos, divididos en cinco pabellones, un total de ciento cuarenta y siete células. Mediante la observación sistemática y la entrevista cualitativa s semi-estructurada como las principales fuentes de recopilación de datos, hemos tratado de explicar el universo que acabamos de analizar por las Ciencias Sociales. Nos dimos cuenta de que, para cumplir con la escena nacional, regaliz viola de manera flagrante lo que se denomina en la Constitución de 1988 y LEP (Ley de Ejecución Penal), sin tener en cuenta los derechos de los individuos a una porción de una oración con un mínimo de dignidad. Se ha demostrado que las personas que permean el universo proviene de un ambiente de la prisión, la sociabilidad violenta, sedo también tienen un habitus precario. La prisión, espacio disciplinario y un tipo específico de interacción social marcada por el control, contribuye a la profundización de habitus, pero que muestra que no es también como un espacio cerrado en absoluto, sino un lugar donde penetran las redes y dinámicas muy social. Al mismo tiempo, se encontró que más de la presencia de "grupos organizados" es el espacio en las cárceles para la interacción social y las redes sociales que pasan dentro y fuera de su espacio
Resumo:
The increasing competitiveness of the construction industry, set in an economic environment in which the offer is now greater than the demand , causes the prices of many products and services, are strongly influenced by the processes of production and the final consumer. Thus, to become more competitive in the market and construction companies are seeking new alternatives to reduce and control costs, production processes and tools that allow for close monitoring of the construction schedule, with the consequent compliance deadline with the client. Based on this scenario, the creation of control tools, service management and planning work emerges as an investment opportunity and an area that can promote great benefits to construction companies. The goal of this work is to present a system of planning, service management and costs control that through worksheets provide information relating to the production phase of the work, allowing the visualization of possible irregularities in the planning and cost of the enterprise, enabling the company to take steps to achieve the goals of the enterprise in question, and correct them when necessary. The developed system has been used in a piece of real estate in Rio Grande do Norte, and the results showed that its use together allowed the construction company to accompany their results and take corrective and preventive actions during the production process, efficiently and effective
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol