2 resultados para Sistema Aqüífero Guarani

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This MSc dissertation presents the results of a research carried out in a 500 km2 area in the Nísia Floresta county. The main goal of the research was to evaluate fault influence on hidrology features of aquifers and lakes, mainly in the Barreiras Group and in the Bonfim lake cluster respectively. The Precambrian crystalline basement is made of Caicó Complex rocks. They are capped by cretaceous sedimentary rocks and by cenozoic sedimentary rocks. Only the latter outcrop in the study area, wheareas the former are described in boreholes. Faults cut across all stratigraphic units and their main trends are NW, NE and E-W, which have been generated by E-W compression. Subordinate N-S trending faults also take place and have been generated by N-S oriented compression. Fault controlled hydrologic features are observed throughout the study area. There are sudden changes in saturated thicknesses of the Barreiras Aquifer due to vertical displacement of the Barreiras Group. The most important underground water source of the Bonfim Lake is related to abrupt thickness changes of the aquifer. In addition, the main faults control the underground drainage network and, probably, change in direction of equipotential surfaces seen on the potenciometric map. Regarding the surface hydrologic features, faults also control river and stream channels, as well as lake origin and shapes. The Bonfim Lake, in particular, has its peculiar shape, which follows NW and NE lineaments, and origin related to faulting and probably underground carstics processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3