2 resultados para Simple Shear-Flow
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Improving the adherence between oilwell metallic casing and cement sheath potentially decrease the number of corrective actions present/y necessary for Northeastern wells submitted to steam injection. In addition to the direct costs involved in the corrective operations, the economic impact of the failure of the primary cementing aIso includes the loss in the production of the well. The adherence between casing and cement is current/y evaluated by a simple shear tests non standardized by the American Petroleum Institute (API). Therefore, the objective of the present is to propose and evaluate a standardized method to assess the adherence of oilwell metallic casing to cement sheath. To that end, a section of a cemented oilwell was simulated and used to test the effect of different parameters on the shear stress of the system. Surface roughness and different cement compositions submitted or not to thermal cycling were evaluated. The results revealed that the test geometry and parameters proposed yielded different values for the shear stress of the system, corresponding to different adherent conditions between metallic casing and cement sheath
Resumo:
Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils