2 resultados para Sewage as fertilizer
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Because of disability in public policy development in mind to attend issues of sanitation in the municipalities, companies known as "clean-blue" appeared proposing to solve a simple collection and management of wastewater produced in single or multifamily residences, commercial, hospitals, etc. In the case of an activity in which there are no worries about the fate of sewage, emerged some doubts about the degree of health and environmental safety in these companies. Traditionally, most of them makes the provision of waste depleted soil or wetland, open, usually located on the outskirts of cities (MENESES, 2001). In turn, the sludge from septic tanks exhausted, provided no technical criteria - in the soil, rivers and as an agricultural fertilizer put in risk the health of the population and environmental quality. This work was entered in the search network 5 of the Notice of the Research Program in Sanitation - PROSAB-5, aimed to study the theme 'Characterization and study of alternative ways of treating sludge from septic tanks in the city of Natal, RN', proposing to evaluate the performance of the use of stabilization ponds as a system to handle waste from septic tanks exhausted. A series of lakes studied belong to one of the largest clean-pit of Natal, consisting of two anaerobic ponds, one facultative and maturation, and a tank disinfection, the wastewater being released in the Potengi River. Samples were collected between the months of October 2007 to October 2008, at six points previously defined and judged as more appropriate to what is proposed study. The analysis results in field and laboratory showed the most significant removal of COD (88.93%), total suspended solids (94.87%), organic nitrogen (66.87%) and thermotolerant coliforms (99.88%). Some results have not reached the expected because the system under study had operating problems that have undermined the efficiency of the reactors
Resumo:
The use of membrane filters in the post-treatment of sewage has been increasingly employed to obtain water quality, applicable to various forms of reuse. Despite the advantages presented using the permeate membranes, such as saving water and reducing water pollution, the concentrate generated in the process ends up being an inconvenience to the deployment of this technology due to lack of sustainable solutions for their management. Thus, the main objective of this research was to evaluate the use of membranes for microfiltration, ultrafiltration, nanofiltration and reverse osmosis concentrated in agriculture, using it as liquid fertilizer. The permeated membranes were also assessed in order to identify activities in which they could be reused. Five configurations were established from four types of membranes, so that each configuration represents a different system. The tests were conducted in batch mode, with triplicate for each configuration. The results indicated that permeated the microfiltration and ultrafiltration can be used in urban areas, in non-potable uses. Have the nanofiltration permeate can be reused in the industry, replacement cooling towers, and other non -potable uses required in the manufacturing unit. The permeate obtained in reverse osmosis met the intended uses for nanofiltration as well as the standards required for boiler feed, adding alkalizing being required to raise the pH to the recommended value. Concentrates generated in nanofiltration and reverse osmosis can be availed as liquid fertilizer in agriculture, but they must be diluted in the irrigation water, in order to adjust the salt concentration allowed for the least tolerant crops patterns