6 resultados para Sessile Drop

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 100% cotton fabric (CO)* treated with plasma of methane CH4 has direct application in all areas that needs of aqueous solutions repellent material like coatings and uniforms applied biomedical, aeronautics, and automobile between others. 100% cotton fabric (CO) samples were treated by plasma with two differents atmosphere: Methane gas (CH4), treatment time was varied in 10 in 10 min. until 60 min., and mixture methane/argon (CH4/Ar), it was varied the proportion 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 e 9:1, with treatment time of 30 minutes. In both, the fluxe was 5 sccm (second cubic centimeter), pressure 6 mbar, voltage 490 V and current 0,15A. The objective of work was measure the superficial tension of 100% CO then it treated with plasma, using contact angle measures of water and glycerol with the surface. The samples were tested after treatment, with 8 and 12 months to verify the superficial modification effects. It was verified an increase of hydrophobility with the Sessile drop values varied between 116,69º to 137,85º and it carried on after 12 months. The no treated samples shows contact angle equal 0º. OES analysis and Raman spectroscopy were accomplished. In the SEM analysis was verified oligomers. The plasma treatment is correct environmental, It turning greater than conventional treatments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to analyze the biological response of titanium surfaces modified by plasma Ar + N2 + H2. Titanium disks grade II received different surface treatments Ar + N2 + H2 plasma, constituting seven groups including only polished samples used as standard. Before and after treatment the samples were evaluated in terms of topography, crystal structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of the sessile drop, respectively. Rich plasma (PRP) was applied to the surfaces modified in culture plates. Images obtained by scanning electron microscopy of the adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. We verified that the adition of H2 on plasma atmosphere resulted in more rough surfaces, with round tops. These surfaces, in contrast to that surfaces treated with high concentration of N2, are less propense to platelet aggregation and, consequently, to the formation of thrombus when applied in biomedical devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research this based on the seminar on Use of Natural Fluids in Refrigeration and Air-Conditioning Systems conducted in 2007 in Sao Paulo. The event was inserted in the National Plan for Elimination of CFCs, coordinated by the Ministry of Environment and implemented by the United Nations Development Programme (UNDP). The objective of this research is analyze the performance of the hydrocarbons application as zeotropic mixtures in domestic refrigerator and validate the application of technical standards for pull down and cycling (on-off) tests to the mixture R290/R600a (50:50) in domestic refrigerator. It was first developed an computational analysis of R290/R600a (50:50) compared to R134a and other mass fractions of the hydrocarbons mixtures in the standard ASHRAE refrigeration cycle in order to compare the operational characteristics and thermodynamic properties of fluids based on the software REFPROP 6.0. The characteristics of the Lorenz cycle is presented as an application directed to zeotropic mixtures. Standardized pull down and cycling (on-off) tests were conducted to evaluate the performance of the hydrocarbons mixture R290/R600a (50:50) as a drop-in alternative to R134a in domestic refrigerator of 219 L. The results showed that the use of R290/R600a (50:50) with a charge of refrigerant reduced at 53% compared to R134a presents reduced energy performance than R134a. The COP obtained with hydrocarbon mixture was about 13% lower compared to R134a. Pull down times in the refrigerator compartments for fluids analyzed were quite close, having been found a 4,7% reduction in pull down time for the R290/R600a compared to R134a, in the freezer compartment. The data indicated a higher consumption of electric current from the refrigerator when operating with the R290/R600a. The values were higher than about 3% compared to R134a. The charge of 40 g of R290/R600a proved very low for the equipment analyzed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From what was stated in the Montreal Protocol, the researchers and refrigeration industry seek substitutes for synthetic refrigerants -chlorofluorocarbons (CFCs) and HCFCs (HCFC) - that contribute to the depletion of the ozone layer. The phase-out of these substances was started using as one of the replacement alternatives the synthetic fluids based on hydro fluorocarbons (HFCs) that have zero potential depletion of the ozone layer. However, contribute to the process of global warming. HFC refrigerants are greenhouse gases and are part of the group of gases whose emissions must be reduced as the Kyoto Protocol says. The hydrocarbons (HC's), for not contribute to the depletion of the ozone layer, because they have very low global warming potential, and are found abundantly in nature, has been presented as an alternative, and therefore, are being used in new home refrigeration equipment in several countries. In Brazil, due to incipient production of domestic refrigerators using HC's, the transition refrigerants remain on the scene for some years. This dissertation deals with an experimental evaluation of the conduct of a drinking fountain designed to work with HFC (R-134a), operating with a mixture of HC's or isobutane (R-600a) without any modification to the system or the lubricating oil. In the refrigeration laboratory of Federal University of Rio Grande do Norte were installed, in a drinking fountain, temperature and pressure sensors at strategic points in the refrigeration cycle, connected to an acquisition system of computerized data, to enable the mapping and thermodynamics analysis of the device operating with R-134a or with a mixture of HC's or with R-600a. The refrigerator-test operating with the natural fluids (mixture of HC's or R-600a) had a coefficient of performance (COP) lower than the R-134a