3 resultados para Sensor array

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensure the integrity of the pipeline network is an extremely important factor in the oil and gas industry. The engineering of pipelines uses sophisticated robotic inspection tools in-line known as instrumented pigs. Several relevant factors difficult the inspection of pipelines, especially in offshore field which uses pipelines with multi-diameters, radii of curvature accentuated, wall thickness of the pipe above the conventional, multi-phase flow and so on. Within this context, appeared a new instrumented Pig, called Feeler PIG, for detection and sizing of thickness loss in pipelines with internal damage. This tool was developed to overcome several limitations that other conventional instrumented pigs have during the inspection. Several factors influence the measurement errors of the pig affecting the reliability of the results. This work shows different operating conditions and provides a test rig for feeler sensors of an inspection pig under different dynamic loads. The results of measurements of the damage type of shoulder and holes in a cyclic flat surface are evaluated, as well as a mathematical model for the sensor response and their errors from the actual behavior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of wastewaters contaminated with oil is of great practical interest and it is fundamental in environmental issues. A relevant process, which has been studied on continuous treatment of contaminated water with oil, is the equipment denominated MDIF® (a mixer-settler based on phase inversion). An important variable during the operation of MDIF® is the water-solvent interface level in the separation section. The control of this level is essential both to avoid the dragging of the solvent during the water removal and improve the extraction efficiency of the oil by the solvent. The measurement of oil-water interface level (in line) is still a hard task. There are few sensors able to measure oil-water interface level in a reliable way. In the case of lab scale systems, there are no interface sensors with compatible dimensions. The objective of this work was to implement a level control system to the organic solvent/water interface level on the equipment MDIF®. The detection of the interface level is based on the acquisition and treatment of images obtained dynamically through a standard camera (webcam). The control strategy was developed to operate in feedback mode, where the level measure obtained by image detection is compared to the desired level and an action is taken on a control valve according to an implemented PID law. A control and data acquisition program was developed in Fortran to accomplish the following tasks: image acquisition; water-solvent interface identification; to perform decisions and send control signals; and to record data in files. Some experimental runs in open-loop were carried out using the MDIF® and random pulse disturbances were applied on the input variable (water outlet flow). The responses of interface level permitted the process identification by transfer models. From these models, the parameters for a PID controller were tuned by direct synthesis and tests in closed-loop were performed. Preliminary results for the feedback loop demonstrated that the sensor and the control strategy developed in this work were suitable for the control of organic solvent-water interface level