2 resultados para Segmentation Method
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Microstrip antennas are widely used in modern telecommunication systems. This is particularly due to the great variety of geometries and because they are easily built and integrated to other high frequency devices and circuits. This work presents a study of the properties of the microstrip antenna with an aperture impressed in the conducting patch. Besides, the analysis is performed for isotropic and anisotropic dielectric substrates. The Multiport Network Model MNM is used in combination with the Segmentation Method and the Greens function technique in the analysis of the considered microstrip antenna geometries. The numerical analysis is performed by using the boundary value problem solution, by considering separately the impedance matrix of the structure segments. The analysis for the complete structure is implemented by choosing properly the number and location of the neighboor element ports. The numerial analysis is performed for the following antenna geometries: resonant cavity, microstrip rectangular patch antenna, and microstrip rectangular patch antenna with aperture. The analysis is firstly developed for microstrip antennas on isotropic substrates, and then extended to the case of microstrip antennas on anisotropic substrates by using a Mapping Method. The experimental work is described and related to the development of several prototypes of rectangular microstrip patch antennas wtih and without rectangular apertures. A good agreement was observed between the simulated and measured results. Thereafter, a good agreement was also observed between the results of this work and those shown in literature for microstrip antennas on isotropic substrates. Furthermore, results are proposed for rectangular microstrip patch antennas wtih rectangular apertures in the conducting patch
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward