4 resultados para Scientific and technological networks

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the relationship between University-Firm aims to understand the model of shared management of R&D in petroleum of Petrobras with UFRN. This is a case study which sought to investigate whether the model of cooperation established by the two institutions brings innovation to generate technical-scientific knowledge and contribute to the coordination with other actors in the promotion of technological innovation. In addition to desk research the necessary data for analysis were obtained by sending questionnaires to the coordinators of projects in R&D at the company and university. Also, interviews were conducted with subjects who participated in the study since its inception to the present day. This case study were analysed through the Resource-Based View and Interorganizational Networks theory. The sample data also stands that: searches were aligned to the strategic planning and that 29% of R&D projects have been successful on the scope of the proposed objectives (of which 11% were incorporated into business processes); which was produced technical and scientific knowledge caracterized by hundreds of national and international publications; thesis, dissertations, eleven patents, and radical and incremental innovations; the partnership has also brought benefits to the academic processes induced by the improved infrastructure UFRN and changing the "attitude" of the university (currently with national prominence in research and staff training for the oil sector). As for the model, the technical point of view, although it has some problems, it follows that it is appropriate. From the viewpoint of the management model is criticized for containing an excess of bureaucracy. From the standpoint of strategic allocation of resources from the legal framework needs to be reassessed, because it is focused only on the college level and it is understood that should also reach the high school given the new reality of the oil sector in Brazil. For this it is desirable to add the local government to this partnership. The set of information leads to the conclusion that the model is identified and named as a innovation of organizational arrangement here known as Shared Management of R&D in petroleum of Petrobras with UFRN. It is said that the shared management model it is possible to exist, which is a simple and effective way to manage partnerships between firms and Science and Technology Institutions. It was created by contingencies arising from regulatory stand points and resource dependence. The partnership is the result of a process of Convergence, Construction and Evaluation supported by the tripod Simplicity, Systematization and Continuity, important factors for its consolidation. In practice an organizational arrangement was built to manage innovative university-industry partnership that is defined by a dyadic relationship on two levels (institutional and technical, therefore governance is hybrid), by measuring the quarterly meetings of systematic and standardized financial contribution proportional to the advancement of research. These details have led to the establishment of a point of interaction between the scientific and technological-business dimension, demystifying they are two worlds apart

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the relationship between University-Firm aims to understand the model of shared management of R&D in petroleum of Petrobras with UFRN. This is a case study which sought to investigate whether the model of cooperation established by the two institutions brings innovation to generate technical-scientific knowledge and contribute to the coordination with other actors in the promotion of technological innovation. In addition to desk research the necessary data for analysis were obtained by sending questionnaires to the coordinators of projects in R&D at the company and university. Also, interviews were conducted with subjects who participated in the study since its inception to the present day. This case study were analysed through the Resource-Based View and Interorganizational Networks theory. The sample data also stands that: searches were aligned to the strategic planning and that 29% of R&D projects have been successful on the scope of the proposed objectives (of which 11% were incorporated into business processes); which was produced technical and scientific knowledge caracterized by hundreds of national and international publications; thesis, dissertations, eleven patents, and radical and incremental innovations; the partnership has also brought benefits to the academic processes induced by the improved infrastructure UFRN and changing the "attitude" of the university (currently with national prominence in research and staff training for the oil sector). As for the model, the technical point of view, although it has some problems, it follows that it is appropriate. From the viewpoint of the management model is criticized for containing an excess of bureaucracy. From the standpoint of strategic allocation of resources from the legal framework needs to be reassessed, because it is focused only on the college level and it is understood that should also reach the high school given the new reality of the oil sector in Brazil. For this it is desirable to add the local government to this partnership. The set of information leads to the conclusion that the model is identified and named as a innovation of organizational arrangement here known as Shared Management of R&D in petroleum of Petrobras with UFRN. It is said that the shared management model it is possible to exist, which is a simple and effective way to manage partnerships between firms and Science and Technology Institutions. It was created by contingencies arising from regulatory stand points and resource dependence. The partnership is the result of a process of Convergence, Construction and Evaluation supported by the tripod Simplicity, Systematization and Continuity, important factors for its consolidation. In practice an organizational arrangement was built to manage innovative university-industry partnership that is defined by a dyadic relationship on two levels (institutional and technical, therefore governance is hybrid), by measuring the quarterly meetings of systematic and standardized financial contribution proportional to the advancement of research. These details have led to the establishment of a point of interaction between the scientific and technological-business dimension, demystifying they are two worlds apart