8 resultados para Saccharum ssp
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Bacteria trom Shewanella and Geobacter ganera are the most studied iron-reducing microorganisms particularly due to their electron transport systems and contribution to some industrial and environmental problems, including steel corrosion, bioenergy and bioremediation of petroleum-impacted sites. The present study was focused in two ways: the first is an in silico comparative ecogenomic study of Shewanella spp. with sequenced genomes, and the second is an experimental metagenomic work to detect iron-reducing Shewanella through PCR-DGGE of a metabolic gene. The in silico study resulted in positive correIation between copy number of 16S rDNA and genome size in Shewanella spp., with clusters of rrn near lhe origin of replication. This way, the genus is inferred as opportunist. There are no compact genomes and their sequences length varied, ranging from 4306142 nt in S. amazonensis SB2B to 5935403 nt in S. woodyi ATCC 51908, without correIation to temperature range characteristic of each specie. Intragenomic 16S rDNA sequences possess little divergence, but reasonable to resuIt in different phyIogenetic trees, depending on the sequence that is chosen to compare. For moIecuIar detection of iron-reducing Shewanella, it is proposed the mtrB gene as new biomarker. because it codes to a fundamental protein at Fe (III)-reduction. The specific primers were designed and evaluated in silico and resulted in a fragment of 360 pb. In the second study, these primers were tested in a genomic sample from S. oneidensis MR-1, amplifying the expected region. After this successfuI resuIt, the primer set was used as a tool to assess the iron-reducing communities of ShewaneIla genus under an environmental stress, i.e. crude oil contamination in mangrove sediment in Rio Grande do Norte State (Brazil). The primers presented high specificity and the reactions performed resulted in one single band of ampIification in the metagenomic samples. The fingerprinting obtained at DGGE reveaIed temporal variation of Shewanella spp. in analyzed samples. The resuIts presented show the detection of a biotechnological important group of microorganisms, the iron-reducing Shewanella spp. using a metabolic gane as target. It is concluded there are eight or more 16S rDNA sequences in Shewanella genus, with little divergence among them that affects the phylogeny; the pair of primers designed to ampIify mtrB sequences is a viable alternative to detect iron-reducing ShewanelIa in metagenomic approaches; such bacteria are present in the mangrove sediment anaIyzed, with temporal variations in the samples. This is the first experimental study that screened the iron-reducing Shewanella genus in a metagenomic experiment of mangrove sediments subjected to oil contamination through a key metabolic gene
Resumo:
Candidiasis is a major oral manifestation in kidney transplant patients. Candida spp. possess essential virulence factors which contribute for the infectious process, including the ability to adhere to epithelial cells and biofilm formation. The extract obtained from the leaves of Eugenia uniflora [acetone: water (7:3, v/v)] has demonstrated antifungal activity against Candida spp. This study evaluated the influence of the extract of E. uniflora in adhesion to human buccal epithelial cells (HBEC) and biofilm formation of 42 strains of Candida spp. isolated from the oral cavity of kidney transplant patients. Candida spp. strains belonging to a culture collection were reactivated and phenotypically re-identified by classical and molecular methods (genotyping ABC and RAPD), when necessary, to complete the identification to the species level. For the virulence tests evaluated in vitro, yeasts were grown in the presence and absence of 1000 g/mL of the extract. A ratio of 10: 1 (Candida spp. cells x HBECs) was incubated for 1 hour at 37 ° C, 200 rpm, fixed with 10% formalin and the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilms were formed on polystyrene microplates in the presence or absence of the extract. The quantification was performed with crystal violet staining at 570 nm. All isolates were viable and exhibited phenotypic characteristics suggestive of each species identified. Two strains presumptively identified as Candida dubliniensis belonged to this species as determined with genotyping ABC, while strains identified as belonging to the Candida parapsilosis species complex were differentiated by RAPD genotyping. Candida albicans was found to be the most adherent species to the buccal epithelia, while C. tropicalis showed remarkable biofilm formation.We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC for both Candida albicans and non-Candida albicans Candida species. On the other hand, only 16 Candida spp. strains (36 %) showed reduced biofilm formation. However, two highly biofilm producer strains of C. tropicalis had an expressive reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp., and may be possibly applied in the future as a novel antifungal agent.
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
The frequency of disseminated candidiasis caused by yeast has enhancing in intensive care unit. Despite the availability of new antifungal drugs, C. albicans sepsis mortality causes can be as high as 30-40%. So, it has been needed to looking for a new therapeutic medicament that helps in treatment and prevention of this infection. Previous data that demonstrated that particulated β-glucan stimulates the immune system and experiments of this work were conducted to investigating if β-glucan extracted from Saccharomices cerevisiae, could modified the evolution of mouse model C. albicans systemic infection. Balb/c mice with sepsis and β-1,3 glucan treated or not were analyzed the influence of β-1,3 glucan in survival of the animals, in the fungal burdens in kidney, in the production of urea and TNF even in the histopathology of kidney. The experiments shown that the infected animals a nd glucan treated had great survival (p<0,05), less unit form colony in kidney and normal levels of urea. In the kidney histopathology of not glucan treated animals it has seen more lesions when compared with treated animals. So we conclude that β-1,3 glucan could stimulate the immune system against disseminated C. albicans
Resumo:
Fruits are rich sources of bioactive compounds, including phenolic compounds. Tropical fruit cultivation is an important productive segment in Brazilian Northeast. Its industrialization generates solid wastes as co-products, with potential environmental impact. Considering the recognized bioactive content of fruit and its derivatives, this research has the objective of investigating acerola (Malpighia glabra L.), cajá-umbu (Spondia ssp), jambolan (Syzygium cumini) and pitanga (Eugenia uniflora) dried wastes obtained by spouted bed drier. It was analyzed the physical-chemical composition, solubility and microphotographic aspect of these dried wastes. Besides this, it was also evaluated the bioactive content, antioxidant activity and inhibitory activity against aamylase and a-glycosidase enzymes of water and ethanol (70%, 80% e 100% v/v) extracts prepared from fruit dried wastes, as well as their possible correlations. The dried fruit wastes showed high phenolic (606.04 to 3074.6 mg GAE eq/100 g sample), anthocyanin (478.7 mg/100 g for jambolan) and ascorbic acid (2748.03 mg/100 g for acerola) contents, as well as high antioxidant DPPH activity (14.27 a 36.30 mg Trolox eq/g sample). The extracts exhibited moderate to high a-amylase inhibition (23.97% a 76.58%) and high α-glycosidase inhibition, which 99.32% peak was reached for ethanol 70% pitanga extracts. It was also observed great positive correlation between phenolic content and DPPH activity (0.97 for acerola), anthocyanin (0.95 for jambolan) and α- glycosidase inhibition (0.98 for acerola). The α-glycosidase inhibition also correlated well with the antioxidant activity for all fruit extracts. The results show that these dried fruit wastes are valuable material for further applications as functional ingredients
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
Recently, capuchin monkeys (Cebus spp.) inhabitants of dry environments and with restriction of fleshy fruits, have been the subject of several studies regarding the use of instruments. During behaviour of using stones to crack open nuts there is evidence of selection of more effective hammers, as well as selection of anvils related to reducing the risk of predation. The aim of this study was to determine whether two groups of capuchin monkeys (C.flavius and and C.libidinosus) inhabitants of the Caatinga of Rio Grande do Norte make choice of hammers and anvils. The record of weight and location of stones indicated active choices of with what (choice of hammers) and where (selection of anvils) to crack open encapsulated seeds. The choice of hammers to break nuts depended on the type and degree of ripeness seed. Thus, smaller seeds were smashed with lighter hammers and larger seeds with heavier hammers. Still, C. flavius was the only species that presented a refinement in the choice of hammers that depended on the ripeness of seeds. For both species of capuchin monkeys studied, the nut-crack sites were not spread in accordance with the spatial distribution of seed-producing species, suggesting that the capuchin monkeys promote active choice of anvils. Thus, in environments with more escape routes through the trees, the nut-crack sites were found further apart than in regions that had less chance of escape through the trees. Also, there was a difference in the spacing of the anvils to depend on the type of seed: sites used to crack larger and more caloric seeds were found farther apart than the sites used to crack smaller and less caloric seeds, suggesting a pattern of avoiding direct competition. We conclude that the capuchin monkeys maximize energy savings and reduced risk of predation and the costs of food competition during the behaviour of using stones to crack open nuts