1 resultado para SCYPHOZOAN AURELIA-LABIATA

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cattleya granulosa Lind is a large and endemic orchid in Atlantic Forest fragments in Northeast Brazil. The facility of collecting, uniqueness of their flowers, which have varying colors between green and reddish brown, and distribution in coastal areas of economic interest make their populations a constant target of predation, which also suffer from environmental degradation. Due to the impact on their populations, the species is threatened. In this study, we evaluate the levels of spatial aggregation in a preserved population, analyze the phylogenetic relationships of C. granulosa Lindl. with four other Laeliinae species (Brassavola tuberculata, C. bicolor, C. labiata and C. schofieldiana) and also to evaluate the genetic diversity of 12 remaining populations of C. granulosa Lindl. through ISSR. There was specificity of epiphytic C. granula Lindl. with a single host tree, species of Eugenia sp. C. granulosa Lindl. own spatial pattern, with the highest density of neighbors within up to 5 m. Regarding the phylogenetic relationships and genetic patterns with other species of the genus, C. bicolor exhibited the greatest genetic diversity (HE = 0.219), while C. labiata exhibited the lowest level (HE = 0.132). The percentage of genetic variation among species (AMOVA) was 23.26%. The principal component analysis (PCA) of ISSR data showed that unifoliate and bifoliolate species are genetically divergent. PCA indicated a close relationship between C. granulosa Lindl. and C. schofieldiana, a species considered to be a variety of C. granulosa Lindl. by many researchers. Population genetic analysis using ISSR showed all polymorphic loci. The high genetic differentiation between populations (ФST = 0.391, P < 0.0001) determined the structure into nine groups according to log-likelihood of Bayesian analysis, with a similar pattern in the dendrogram (UPGMA) and PCA. A positive and significant correlation between geographic and genetic distances between populations was identified (r = 0.794, P = 0.017), indicating isolation by distance. Patterns of allelic diversity suggest the occurrence of population bottlenecks in most populations of C. granulosa Lindl. (n = 8). Genetic data indicate that enable the maintenance of genetic diversity of the species is complex and is directly related to the conservation of different units or groups that are spatially distant.