6 resultados para SBR

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2.5D ray-tracing propagation model is proposed to predict radio loss in indoor environment. Specifically, we opted for the Shooting and Bouncing Rays (SBR) method, together with the Geometrieal Theory of Diffrartion (GTD). Besides the line-of-sight propagation (LOS), we consider that the radio waves may experience reflection, refraction, and diffraction (NLOS). In the Shooting and Bouncing Rays (SBR) method, the transmitter antenna launches a bundle of rays that may or may not reach the receiver. Considering the transmitting antenna as a point, the rays will start to launch from this position and can reach the receiver either directly or after reflections, refractions, diffractions, or even after any combination of the previous effects. To model the environment, a database is built to record geometrical characteristics and information on the constituent materials of the scenario. The database works independently of the simulation program, allowing robustness and flexibility to model other seenarios. Each propagation mechanism is treated separately. In line-of-sight propagation, the main contribution to the received signal comes from the direct ray, while reflected, refracted, and diffracted signal dominate when the line-of-sight is blocked. For this case, the transmitted signal reaches the receiver through more than one path, resulting in a multipath fading. The transmitting channel of a mobile system is simulated by moving either the transmitter or the receiver around the environment. The validity of the method is verified through simulations and measurements. The computed path losses are compared with the measured values at 1.8 GHz ftequency. The results were obtained for the main corridor and room classes adjacent to it. A reasonable agreement is observed. The numerical predictions are also compared with published data at 900 MHz and 2.44 GHz frequencies showing good convergence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inúmeras estruturas de concreto no Brasil e no mundo estão atingindo o limite de sua vida útil projetada, completando um ciclo de cinco ou mais décadas de uso e operação. Além das estruturas mais antigas, existem ainda estruturas com reduzido tempo de serviço, e qualidade discutível, que já apresentam patologias em estado tão avançado que chegam a comprometer o seu desempenho. Vindo ao encontro dessas necessidades e no sentido de contribuir para o avanço científico e tecnológico do setor, este trabalho apresenta um método para dosagem, preparo e aplicação de argamassas de alto desempenho para recuperação de estruturas deterioradas, além de sugerir procedimentos para a realização desses reparos, fomentando a cultura das manutenções preventivas e desmistificando a complexidade atribuída a tais operações. Para tanto, foram realizados ensaios mecânicos, microestruturais e relacionados à durabilidade em corpos-de-prova moldados com sílica ativa e látex de estireno-butadieno. Os resultados indicaram que a adoção desses ingredientes, na composição da argamassa de reparo, provocou uma redução significativa da permeabilidade total e descontinuidade de poros, assim como promoveu uma melhor integridade dos constituintes da argamassa, traduzindo-se em uma ampliação, expressiva, das suas capacidades mecânicas. Quando comparada aos produtos industrializados da construção civil, com padrões similares, proporcionou uma economia da ordem de 85%, que permitiria recuperar, com os mesmos custos, quase cinco vezes mais estruturas comprometidas. Este estudo, de viés altamente tecnológico, vem oferecer à construção civil uma argamassa polimérica de alto desempenho, com função reparadora e custo mais acessível, que pode ser adotada em canteiros de obras, implementando ações de natureza sustentável e ainda atendendo às atuais exigências elencadas pela literatura, relacionadas à desempenho, vida útil e durabilidade das estruturas reparadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.