4 resultados para Ruth Moore
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The present study aimed to develop microsatellite markers (SSR) for Copernicia prunifera; and characterize the demographic pattern and the spatial genetic structure (SGS) in different development stages of C. prunifera in a natural population of Rio Grande do Norte (RN) by using ISSR molecular markers. 17 SSR primers pairs were developed, which were tested by using DNA from samples of different populations. The demographic and genetic spatial structure was assessed in a plot with an area of 0.55 ha, where all individuals were georeferenced. The molecular analyses with the use of microsatellite markers pointed out that all built primers pairs, when submitted to PCR, had amplification. They showed sizes of base pairs ranging between 113 and 250 bp. The demographic analyses showed a clustered standard of spatial distribution in the first distance classes, random between 40 and 50 m and segregated in higher distances. Eight ISSR primers were used, thereby producing a total of 102 loci, with 100 of them being polymorphic. Among the three stages, the young showed the highest Nei’s genetic diversity index (He = 0.37); whilst the lowest index was found in the reproductive adults (He = 0.34). The AMOVA results showed a greater genetic differentiation within the development stages (98.61%) in comparison to the interval among the stages (1.39%). The total population (n = 161) showed a positive and significant relationship of kinship in the first distance class (12.3 m). The young showed a significant kinship up to 10.5 m and negative in the fifth distance class (37.6 m). The non-reproductive adults had a positive relationship of kinship in the first distance class (11.0 m) and random distribution of genotypes in the remaining classes. The reproductive adults showed genotypes spatially distributed in a random way. The values for the genetic bottleneck tests proved that the number of loci with excess observed heterozygosity was greater than expected. The SGS results reflect the restricted dispersion of the species, and the bottleneck tests reflect the reduction genotypes provoked by the anthropization of natural environments of C. prunifera.
Resumo:
The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers