48 resultados para Robôs Cooperativos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Este trabalho apresenta o desenvolvimento de um método de coordenação e cooperação para uma frota de mini-robôs móveis. O escopo do desenvolvimento é o futebol de robôs. Trata-se de uma plataforma bem estruturada, dinâmica e desenvolvida no mundo inteiro. O futebol de robôs envolve diversos campos do conhecimento incluindo: visão computacional, teoria de controle, desenvolvimento de circuitos microcontrolados, planejamento cooperativo, entre outros. A título de organização os sistema foi dividido em cinco módulos: robô, visão, localização, planejamento e controle. O foco do trabalho se limita ao módulo de planejamento. Para auxiliar seu desenvolvimento um simulador do sistema foi implementado. O simulador funciona em tempo real e substitui os robôs reais. Dessa forma os outros módulos permanecem praticamente inalterados durante uma simulação ou execução com robôs reais. Para organizar o comportamento dos robôs e produzir a cooperação entre eles foi adotada uma arquitetura hierarquizada: no mais alto nível está a escolha do estilo de jogo do time; logo abaixo decide-se o papel que cada jogador deve assumir; associado ao papel temos uma ação específica e finalmente calcula-se a referência de movimento do robô. O papel de um robô dita o comportamento do robô na dada ocasião. Os papéis são alocados dinamicamente durante o jogo de forma que um mesmo robô pode assumir diferentes papéis no decorrer da partida
Resumo:
The current study analyzes the birth and development of two strategic alliances established between shrimp producers in Rio Grande do Norte: the Unipesca and the Coopercam. To achieve this aim, two approaches which, at first sight, could be considered contradictory were used: the Transactional Costs Economy and Embeddedness. The first approach is fundamentally based in the studies of Williamson (1985; 1991; 1996; 1999; 2000; 2002). Embededness, on the other hand, went through the review of a series of authors, such as Burt (1992), Granovetter (1973; 1985), Uzzi (1997), Gulati (1994; 1995; 1997; 1998; 1999; 2000), Nielsen (2005), Ring (2002), Ring and Van de Ven (1994), Zafirovski (2002), among others. To analyze the birth and development of the cooperatives in this study, Gulati s work (1998) was used. This study shows the steps to be studied for a better comprehension of an alliance: the decision of starting an alliance and the choice of the partners, the decision about the governance structure, the evolution of the alliance and the development of the companies which established this partnership. To carry this study out, a study case accordingly to Yin s proposal (2001) was adopted. Semi-structured interviews with pre-defined plots were conducted in two phases: in the beginning of 2006 and in the beginning of 2007. The subjects from the research were, in 2006, representative members of the main associations and corporations, besides the shrimp producers from the state, when the context of the activity was set. In the second phase, in 2007, representative members from the two cooperatives that were listed above were interviewed the president from Coopercam and the marketing manager from Unipesca. Besides these two members, directors from two important organizations in each of these cooperatives were also interviewed, giving out the necessary information for the research. Secondary data was also collected from the Brazilian Association of Crab producers website, as well as from news from important newspapers in RN, such as Tribuna do Norte. The primary data was analyzed in terms of quality, accordingly to the documental analysis technique. Thus, through the data that was collected, it can be concluded that the reasons that motivated the companies to cooperate can be explained in terms of the transactional costs economy. However, the choice of partners is more connected to aspects approached by the social embededness. When aspects related to development and evolution were analyzed, it could be seen that both aspects from TCE and Embededness were vital to explain the development of the cooperatives mentioned
Resumo:
We are observing, particurlarly in the last two decades an aggravation of social problems inherent in contemporary society, such as high rates of unereloyment and social exclusion. In this context, the social economy appears as an alternative to generate employment and income, especially for the country man through the production and distribution of developed products in a collective way where the actions of cooperation gain significant importance this study aims to determine how the collective actions affect the sustainability of cooperative socio-political and economic developments of the economy and so it was adopted a methodology of multiple case study in three organizations in the apiculture sector of Rio Grande do Norte the Beekeepers Association of São Rafael City (AAMSR); Beekeepers Association of Serra do Mel (APISMEL) and Family Agriculture Cooperative of Apodi (COOAFAP). To evaluate relationship in collaborative ventures solidarity it is constructed a matrix that identify and develop relationship in the organization and, to measure the level of sustainability of these ventures are calculated the indices of socio-political sustainability and economic sustainability. The research results shows a fully collaborative relationship in all cases based on factors such as effective communication between beekeepers involved/and also cooperated with these organization; availability of beekeepers to perform adjustments in production process; an organizational culture focused on collaboration and high level of situation described above and taking into account that the business of solidarity economy better positioned in the matrix of relationships are those that have best indices of sustainability, it is evidence the importance of collaborative relationships for the sustainability of joint ventures
Resumo:
In this work, we propose methodologies and computer tools to insert robots in cultural environments. The basic idea is to have a robot in a real context (a cultural space) that can represent an user connected to the system through Internet (visitor avatar in the real space) and that the robot also have its representation in a Mixed Reality space (robot avatar in the virtual space). In this way, robot and avatar are not simply real and virtual objects. They play a more important role in the scenery, interfering in the process and taking decisions. In order to have this service running, we developed a module composed by a robot, communication tools and ways to provide integration of these with the virtual environment. As welI we implemented a set of behaviors with the purpose of controlling the robot in the real space. We studied available software and hardware tools for the robotics platform used in the experiments, as welI we developed test routines to determine their potentialities. Finally, we studied the behavior-based control model, we planned and implemented alI the necessary behaviors for the robot integration to the real and virtual cultural spaces. Several experiments were conducted, in order to validate the developed methodologies and tools
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.
Resumo:
Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second
Resumo:
High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size effects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood
Resumo:
The localization of mobile robots in indoor environments finds lots of problems such as accumulated errors and the constant changes that occur at these places. A technique called global vision intends to localize robots using images acquired by cameras placed in such a way that covers the place where the robots movement takes place. Localization is obtained by marks put on top of the robot. Algorithms applied to the images search for the mark on top of the robot and by finding the mark they are able to get the position and orientation of the robot. Such techniques used to face some difficulties related with the hardware capacity, fact that limited their execution in real time. However, the technological advances of the last years changed that situation and enabling the development and execution of such algorithms in plain capacity. The proposal specified here intends to develop a mobile robot localization system at indoor environments using a technique called global vision to track the robot and acquire the images, all in real time, intending to improve the robot localization process inside the environment. Being a localization method that takes just actual information in its calculations, the robot localization using images fit into the needs of this kind of place. Besides, it enables more accurate results and in real time, what is exactly the museum application needs.
Resumo:
Oil exploration at great depths requires the use of mobile robots to perform various operations such as maintenance, assembly etc. In this context, the trajectory planning and navigation study of these robots is relevant, as the great challenge is to navigate in an environment that is not fully known. The main objective is to develop a navigation algorithm to plan the path of a mobile robot that is in a given position (
Resumo:
Oil exploration at great depths requires the use of mobile robots to perform various operations such as maintenance, assembly etc. In this context, the trajectory planning and navigation study of these robots is relevant, as the great challenge is to navigate in an environment that is not fully known. The main objective is to develop a navigation algorithm to plan the path of a mobile robot that is in a given position (
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.
Resumo:
This work proposes a new autonomous navigation strategy assisted by genetic algorithm with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in environments - both static and dynamic - in which the location and shape of the obstacles is not known in advance. In each shift event, a control algorithm minimizes the distance between the robot and the object and maximizes the distance from the obstacles, rescheduling the route. Using a spatial location sensor and a set of distance sensors, the proposed navigation strategy is able to dynamically plan optimal collision-free paths. Simulations performed in different environments demonstrated that the technique provides a high degree of flexibility and robustness. For this, there were applied several variations of genetic parameters such as: crossing rate, population size, among others. Finally, the simulation results successfully demonstrate the effectiveness and robustness of DPNA-GA technique, validating it for real applications in terrestrial mobile robots.