11 resultados para Ritmo Audiodescrição

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that sleep plays an important role in the process of motor learning. Recent studies have shown that the presence of sleep between training a motor task and retention test promotes a learning task so than the presence of only awake between training and testing. These findings also have been reported in stroke patients, however, there are few studies that investigate the results of this relationship on the functionality itself in this population. The objective of this study was to evaluate the relationship between functionality and sleep in patients in the chronic stage of stroke. A cross-sectional observational study was conducted. The sample was composed of 30 stroke individuals in chronic phase, between 6 and 60 months after injury and aged between 55 and 75 years. The volunteers were initially evaluated for clinical data of disease and personal history, severity of stroke, through the National Institute of Health Stroke Scale, and mental status, the Mini-Mental State Examination. Sleep assessment tools were Pittsburgh Sleep Quality Index, the Questionnaire of Horne and Ostberg, Epworth Sleepiness Scale, the Berlin questionnaire and actigraphy, which measures were: real time of sleep, waking after sleep onset, percentage of waking after sleep onset, sleep efficiency, sleep latency, sleep fragmentation index, mean activity score. Other actigraphy measures were intraday variability, stability interdiária, a 5-hour period with minimum level of activity (L5) and 10-hour period with maximum activity (M10), obtained to evaluate the activity-rest rhythm. The Functional Independence Measure (FIM) and the Berg Balance Scale (BBS) were the instruments used to evaluate the functional status of participants. The Spearman correlation coefficient and comparison tests (Student's t and Mann-Whitney) were used to analyze the relationship of sleep assessment tools and rest-activity rhythm to measures of functional assessment. The SPSS 16.0 was used for analysis, adopting a significance level of 5%. The main results observed were a negative correlation between sleepiness and balance and a negative correlation between the level of activity (M10) and sleep fragmentation. No measurement of sleep or rhythm was associated with functional independence measure. These findings suggest that there may be an association between sleepiness and xii balance in patients in the chronic stage of stroke, and that obtaining a higher level of activity may be associated with a better sleep pattern and rhythm more stable and less fragmented. Future studies should evaluate the cause-effect relationship between these parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke is a neurological disorder caused by restriction of blood flow to the brain, which generates directly a deficit of functionality that affects the quality of life of patients. The aim of this study was to establish a short version of the Social Rhythm Scale (SRM), to assess the social rhythm of stroke patients. The sample consisted of 84 patients, of both sexes, with injury time exceeding 6 months. For seven days, patients recorded the time held 17 activities of SRM. Data analysis was performed using a principal components factor analysis with varimax rotation of the full version of SRM in order to determine which activities could compose brief versions of SRM. We then carried out a comparison of hits, the ALI (Level Activity Index) and SRM, between versions, by Kruskal-Walls and the Mann-Whitney test. The Spearman correlation test was used to evaluate the correlation between the score of the full version of SRM with short versions. It was found that the activities of SRM were distributed in three versions: the first and second with 6 activities and third with 3 activities. Regarding hits, it was found that they ranged from 4.9 to 5.8 on the first version; 2.3 to 3.8 in version 2 and 2.8 to 6.2 in version 3, the first the only version that did not show low values. The analysis of ALI, in version 1, the median was 29, in version 2 was 14 and in version 3 was 18. Significant difference in the values of ALI between versions 1 and 2, between 2 and 3 and between versions 1 and 3. The highest median was found in the first version, formed by activities: out of bed, first contact, drink coffee, watch TV in the evening and go to bed. The lowest median was observed in the second version and this was not what had fewer activities, but which had social activities. The medians of the SRM version 1 was 6, version 2 was 4 and version 3 was 6. Significant difference in the values of SRM between versions 1 and 2 and between 2 and 3, but no significant difference between versions 1 and 3. Through analysis, we found a significant correlation only between the full version and the version 1 (R2 = 0.61) (p <0.05), no correlation was found with version 2 (R2 = 0.007) nor with version 3 (R2 = 0.002), this was finally a factor to consider version 1 as the short brazilian version of the Social Rhythm Metric for stroke patients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal allocation of the active phase in relation to light and dark cycle (LD) changes during puberty in humans, degus, rats and rhesus. In marmosets, the animal model used in several biomedical researches, there is evidence of a delay at the beginning of the active phase and an increase in total daily activity after onset of puberty. However, as this aspect was evaluated in animals maintained in natural environmental conditions, it was not possible to distinguish between the effects of puberty and of seasonality. Furthermore, as motor activity is the result of different behaviors in this species, it is also important to characterize the diurnal distribution of other behaviors in juvenile stage. With the aim of characterizing the circadian rhythm of motor activity and the diurnal profile of affiliative behavior in marmosets, the motor activity of 5 dyads juveniles between 4 and 12 months of age and their parents was recorded continuously for actímetro. The families were maintained under artificial LD 12:12 h, constant temperature and humidity. The duration of grooming behavior, proximity and social play among juveniles was recorded 2 times a week in sessions of 15 minutes each hour of the active phase. Afetr onset of puberty in juvenile, it was observed that there was no change in the parameters of circadian motor activity rhythm which were common to most animals. Despite the absence of pubertal modulation, it was observed that the circadian activity profiles have stronger synchrony between individuals of the same family than that of different families, which may indicate that the circadian activity rhythm was modulated by the dynamics of social interactions. In relation to age, the total daily activity and the ratio between evening and morning activity (EA/MA) were higher in juveniles than in adults, which may be associated with differences in the circadian timing system between age groups. Furthermore, the onset of the 10 consecutive hours of higher activity (M10) occurred earlier in adult males than in other members of the group, probably as a way to avoid competition for resources in one of the first activities of the day that is foraging. During the juvenile stage, there was an increase in total daily activity that may be associated with increased motor ability of juveniles. In addition to the circadian activity rhythm, the daytime profile of proximity and social play behaviors was similar between the 5th and 12th month of life of juveniles, in which the interval between 7- 10 h in the morning showed the highest values of proximity and lower values of play social. Moreover, the duration of the grooming showed a similar distribution to adults from the 8th month, wherein the higher values occurring at the interval between 11 14 h of day. Considering the results, the parameters of the circadian activity rhythm had a greater influence of social factors than puberty. In relation to age, there were no changes related to the allocation of the active phase in relation to the LD cycle, but total daily activity, the ratio AV/AM and the start of the M10 is possible to observe differences between juveniles and adults

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kerodon rupestris (rock cavy, mocó) is an endemic caviidae of Brazilian northeast that inhabits rocky places in the semi arid region. The aim of this study was to characterize the activity/rest rhythm of the rock cavy under 12:12 h LD cycle and continuous light. In the first stage, seven animals were submitted to two light intensities (LD; 250:0 lux and 400:0 lux; 40 days each intensity). In the second stage four males were kept for 40 days in LD (470:<1 lux), for 18 days in LL 470 lux (LL470) and for 23 days in red dim light below 1 lux (LL<1). In the third stage three males were initially kept in LD 12:12 h (450:<1 lux) and after that in LL with gradual increase in light intensity each 21 days (<1 lux LL<1; 10 lux-LL10; 160 lux LL160; 450 lux LL450). In the fourth stage it was analyzed the motor activity of 16 animals in the first 10 days in LD. Motor activity was continuously recorded by passive infrared movement sensors connected to a computer and totaled in 5 min bins. The activity showed circadian and ultradian rhythms and activity peaks at phase transitions. The activity and the rest occurred in the light as well as in the dark phase, with activity mean greater in the light phase for most of the animals. The light intensity influenced the activity/rest rhythm in the first three stages and in the first stage the activity in 400 lux increased in four animals and decreases in two. In the second stage, the tau for 3 animals in LL470 was greater than 24 h; in LL<1 it was greater than 24 h for one and lower for two. In the third stage the tau decreased with the light intensity increase for animal 8. During the first days in the experimental room, the animals did not synchronize to the LD cycle with activity and rest occurring in both phases. The results indicate that the activity/rest rhythm of Kerodon rupestris can be affected by light intensity and that the synchronization to the LD cycle results from entrainment as well as masking probably as a consequence of the action of two or more oscillators with low coupling strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal zeitgeber for most of species is the light-dark photocycle (LD), though other environment factors as food availability, temperature and social cues may act. Daily adjustment of the circadian pacemaker may result from integration of environmental photic and non-photic cues with homeostatic cues. Characterization of non-photic effects on circadian timing system in diurnal mammals is scarce in relation to nocturnal, especially for ecologically significant cues. Thus, we analyzed the effect of conspecific vocalizations and darkness on circadian activity rhythm (CAR) in the diurnal primate Callithirx jacchus. With this objective 7 male adults were isolated in a room with controlled illumination, temperature (26,8 ± 0,2°C) and humidity (81,6 ± 3,6%), and partial acoustic isolation. Initially they were under LD 12:12 (~300:2 lux), and subsequently under constant illumination (~2 lux). Two pulses of conspecific vocalizations were applied in total darkness, separated by 22 days, at 7:30 h (external time) during 1 h. They induced phase delays at circadian times (CTs) 1 and 10 and predominantly phase advances at CTs 9 and 15. After that, two dark pulses were applied, separated by 14 days, during 1 h at 7:30 h (external time). These pulses induced phase delays at CTs 2, 3 and 18, predominantly phase advances at CTs 8, 10 and 19, and no change at CT 14. However, marmosets CAR showed oscillations in endogenous period and active phase duration influenced by vocalizations from animals outside the experimental room, which interfered on the phase responses to pulses. Furthermore, social masking and relative coordination with colony were observed. Therefore, phase responses obtained in this work cannot be attributed only to pulses. Afterwards, pulses of conspecific vocalizations were applied in total darkness at 19:00 h (external time), during 1 h for 5 consecutive days, and after 21 days, for 30 consecutive days, on attempt to synchronize the CAR. No animal was synchronized by these daily pulses, although oscillations in endogenous period were observed for all. This result may be due to habituation. Other possibility is the absence of social significance of the vocalizations for the animals due to random reproduction, since each vocalization has a function that could be lost by a mixture of sounds. In conclusion, conspecific vocalizations induce social masking and relative coordination in marmosets CAR, acting as weak zeitgeber

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of ontogenetic studies on circadian timing system have been developed on infants, adults and elderly. The puberty has not been a stage of life few studied, except for researches in human adolescents, that presents phase delay in sleep-wake cycle. However, few studies have focused on the basis of this circadian change due to methodological difficulties. Thus, an animal model to study the sleep-wake cycle at puberty is essential. In the common marmoset, a social primate, the circadian activity periodicity stabilizes around 4 months (juvenile stage) and the 8h period component has a seasonal variation. Puberty stage of this species begins near the 8th month of age in males and near the 7th month in females with 7 months of duration. With the aim to characterize the circadian motor activity rhythm during puberty in marmosets (Callithrix jacchus) the motor activity was continuous registered by actiwatches in 6 animals between 5-12 months. Since the social factor influence the behavior of this specie, behavioral observations were realized in 30 minutes windows twice/week to a general evaluation of the influence social interactions dynamic across experiment. Determination of puberty onset was done by fecal progesterone and estrogens in females, and androgens in males. From the analysis of the multiple regression test was selected a model that evaluate age and seasonal variables effect on the activity rhythm according to the higher explanation coefficient. The total activity was the only parameter influenced by age. Moreover, the activity onset was the parameter more explained by the model, and the sunrise was the factor that most influenced it. After the puberty onset, 2 dyads advanced the activity onset. The activity total decreased in 1 dyad and increased in 2 dyads. This increase may be related to the birth of infants in these families. The motor activity circadian component stabilized later in 1 dyad, coinciding with the puberty onset of these animals, while bimodality, caused by the 8 h component, was modulated by seasonality. The agonistic behavior was not evaluated due to reduced number of events. There were changes across ages in affiliative behavior of contact in 1 dyad, grooming done in 1 animal and grooming received in 2 animals. Although there is evidence of puberty effect on the activity motor rhythm, the photoperiodic fluctuations influenced the rhythm. Therefore is not possible to affirm if the puberty modulate the activity rhythm in marmosets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to characterize the seasonal and daily rhythm of Dinoponera quadriceps foraging activity in natural environment, four colonies of D. quadriceps were observed in an area of secondary Atlantic forest in northeastern Brazil. Data collection was performed during 72 hours every three months during an annual cycle. Colonies of D. quadriceps exhibited seasonal variation in foraging activity, peaking in the early dry season, followed by a sudden decline at the end of this season and increasing again at the late rainy season. The seasonal rhythm of foraging was positively related to the duration of the daylight and luminosity, and negatively to the time of sunrise and rainfall. Regarding the daily rhythm, foraging activity was predominantly diurnal independent of season. At the early dry season, the colonies had two activity peaks, one in the morning and another in the afternoon, with a decrease in foraging at midday, while in the rest of the year foraging activity was distributed more evenly throughout the daylight. The daily rhythm of foraging activity had a stronger and positive relation with light intensity. The second most important factor determining the daily rhythm of foraging was temperature that was also positively related for most of the year. Relative humidity showed a weak and negative relation with the daily rhythm of foraging in just one month of observation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marmosets, Callithrix jacchus, are strictly diurnal animals. The motor activity rhythmicity is generated by the circadian timing system and is modulated by environmental factors, mainly by photic stimuli that compose the light-dark cycle. Photic stimuli can reset the biological oscilators changing activity motor pattern, by a mechanism called entrainment. Otherwise, light can act directly on expressed rhythm, without act on the biological oscillators, promoting the masking. Thus, photic stimuli can synchronize the circadian activity rhythm (CAR) by two distinct mechanisms, acting isolated or at a combined way. Among the elements that can influence photic synchronization, the duration and time of photic exposure is pointed out. If in the natural environment the marmoset can choose places of different intensity illumination and is synchronized to light-dark cycle (LD), how the photic synchronization mechanism can be evaluated in laboratory by light self-selection? With objective to response this question, four adult male marmosets were studied at two conditions: with and without sleeping box. The animals were submitted to a LD cycle (12:12/ 350:2 lx) and constant light (LL: 350 lx) conditions in individual cages with an opaque sleeping box, that permitted the light self-selection. At the room, the temperature was 25.6 ºC (± 0.3 ºC) and humidity was 78.7 (± 5%). The motor activity was recorded at 5 min bins by infrared movement sensors installed at the top of the cages. The motor activity profile was distinct at the two conditions: without the sleeping box protection against light, the activity frequency was higher at CT 11-12 (ANOVA; F(3.23) = 62.27; p < 0.01). Also, the duration of the active phase (α) was prolonged of about 1 h (t test, p < 0.05) and the animals showed a significant delay on the activity onset and offset (t test, p < 0.05) and at the acrophase (confidence intervals of 5%) of CAR. In LL, the light continuous exposure prolonged the active phase and influenced the endogenous expression of the circadian activity rhythm period. From the result analysis, it is concluded that the light self-selection can modify several parameters of CAR in marmosets, allowing the study of the synchronization mechanism using the burrow model. Thus, without sleeping box there was a phase delay between the CAR and LD (entrainment) and an increase of activity near lights off (positive masking). Furthermore, in LL, the light continuous exposure modifies α and the endogenous expression of CAR. It is suggested that the light self-selection might be take into account at investigations that evaluate the biological rhythmicity in marmosets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In marmosets, it was observed that the synchrony among circadian activity profiles of animals that cohabite in family groups is stronger than those of the same sex and age of different families. Inside the group, it is stronger between the younger ones than between them and their parents. However, the mechanisms involved in the social synchrony are unknown. With the aim to investigate the synchronization mechanisms involved in the synchrony between the circadian activity profiles during cohabitation in pairs of marmosets, the motor activity was continuously registered by the use of actmeters on three dyads. The pairs were maintained in two different conditions of illumination: light-dark cycle LD 12:12 (LD cohabitation I – 21 days), and thereafter in LL (~350 lux). Under LL, the pairs were submitted to four experimental situations: 1. Cohabitation (LLJ I – 24 days), 2. Removal of one member of the pair to another room with similar conditions (LLS I – 20 days), 3. Reintroduction of the separated member in the cage of the first situation (LLJ II – 30 days) and 4. Removal of a member from each pair to another experimental room (LLS II – 7 days), to evaluate the mechanisms of synchronization. Ultimately, the members of each pair were reintroduced in the cage and were kept in LD cycle 12:12 (LDJ II – 11 days). The rhythms of pairs free-ran in LL, with identical periods between the members of each pair during the two stages of cohabitation. In the stages in which the animals were separated, only the rhythms of two females free-ran in the first stage and of three animals in the second one. In those conditions, the rhythms of animals of each pair showed different endogenous periods. Besides, during cohabitation in LD and LL, the members of each pair showed a stable phase relationship in the beginning of the active phase, while in the stages in which the animals were separated it was noticed a breaking in the stability in the phase relationships between the circadian activity profiles, with an increase in the difference in the phase angles between them. During cohabitation, at the transition between LD and LL, all animals showed free-running rhythms anticipating progressively the beginning and the end of the active phase in a phase similar to the previous condition, showing signs of entrainment to the previous LD. While in the posterior stages this was observed in only three animals between: LLT I and LLS I, and LLT II and LLS II, evidencing signs of entrainment to social cues between the members of each pair. On the other hand, one animal delayed progressively between LLT I and LLS I, three animals delayed between LLS I and LLT II, and three animals between LLT II and LLS II, perhaps by entrainment to the animals maintained outdoors in the colony. Similar process was observed in four animals between LLS II and LDT II, indicating entrainment to LD. In the transition between LLS I and LLT II, signs of masking was observed in the rhythm of a female in response to the male and in another pair in the rhythm of the male in regard to that of the female. The general and maximum correlations in the circadian activity profiles were stronger during cohabitation in LD and LL than in the absence of social contact in LL, evidencing the social effect. The cohabiting pairs had higher values of the maximum correlation in LD and LL than when the profiles were correlated to animals of different cages, with same or different sexes. Similar results were observed in the general correlation. Therefore, it is suggested that cohabitation induces a strong synchrony between circadian activity profiles in marmosets, which involves entrainment and masking. Nevertheless, additional studies are necessary to evaluate the effect of social cues on the synchronization of the circadian rhythm in pairs of marmosets in the absence of external social cues in order to confirm this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged  held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with  < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced age may become a limiting factor for the maintenance of rhythms in organisms, reducing the capacity of generation and synchronization of biological rhythms. In this study, the influence of aging on the expression of endogenous periodicity and synchronization (photic and social) of the circadian activity rhythm (CAR) was evaluated in a diurnal primate, the marmoset (Callithrix jacchus). This study had two approaches: one with longitudinal design, performed with a male marmoset in two different phases: adult (three years) and older (9 y.o.) (study 1) and the second, a transversal approach, with 6 old (♂: 9.7 ± 2.0 y.o.) and 11 adults animals (♂: 4.2 ± 0.8 y.o.) (study 2). The evaluation of the photic synchronization involved two conditions in LD (natural and artificial illuminations). In study 1, the animal was subjected to the following stages: LD (12:12 ~ 350: ~ 2 lx), LL (~ 350 lx) and LD resynchronization. In the second study, the animals were initially evaluated in natural LD, and then the same sequence stages of study 1. During the LL stage in study 2, the vocalizations of conspecifics kept in natural LD on the outside of the colony were considered temporal cue to the social synchronization. The record of the activity was performed automatically at intervals of five minutes through infrared sensor and actimeters, in studies 1 and 2, respectively. In general, the aged showed a more fragmented activity pattern (> IV < H and > PSD, ANOVA, p < 0.05), lower levels of activity (ANOVA, p < 0.05) and shorter duration of active phase (ANOVA, p < 0.05) in LD conditions, when compared to adults. In natural LD, the aged presented phase delay pronounced for onset and offset of active phase (ANOVA, p < 0.05), while the adults had the active phase more adjusted to light phase. Under artificial LD, there was phase advance and greater adjustment of onset and offset of activity in relation to the LD in the aged (ANOVA, p < 0.05). In LL, there was a positive correlation between age and the endogenous period () in the first 20 days (Spearman correlation, p < 0.05), with prolonged  held in two aged animals. In this condition, most adults showed free-running period of the circadian activity rhythm with  < 24 h for the first 30 days and later on relative coordination mediated by auditory cues. In study 2, the cross-correlation analysis between the activity profiles of the animals in LL with control animals kept under natural LD, found that there was less social synchronization in the aged. With the resubmission to the LD, the resynchronization rate was slower in the aged (t-test; p < 0.05) and in just one aged animal there was a loss of resynchronization capability. According to the data set, it is suggested that the aging in marmosets may be related to: 1) lower amplitude and greater fragmentation of the activity, accompanied to phase delay with extension of period, caused by changes in a photic input, in the generation and behavioral expression of the CAR; 2) lower capacity of the circadian activity rhythm to photic synchronization, that can become more robust in artificial lighting conditions, possibly due to the higher light intensities at the beginning of the active phase due to the abrupt transitions between the light and dark phases; and 3) smaller capacity of non-photic synchronization for auditory cues from conspecifics, possibly due to reducing sensory inputs and responsiveness of the circadian oscillators to auditory cues, what can make the aged marmoset most vulnerable, as these social cues may act as an important supporting factor for the photic synchronization.