5 resultados para Restricted Basin
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
All around the world, naturally occurring hydrocarbon deposits, consisting of oil and gas contained within rocks called reservoir rocks , generally sandstone or carbonate exists. These deposits are in varying conditions of pressure and depth from a few hundred to several thousand meters. In general, shallow reservoirs have greater tendency to fracture, since they have low fracture gradient, ie fractures are formed even with relatively low hydrostatic columns of fluid. These low fracture gradient areas are particularly common in onshore areas, like the Rio Grande do Norte basin. During a well drilling, one of the most favorable phases for the occurrence of fractures is during cementing, since the cement slurry used can have greater densities than the maximum allowed by the rock structure. Furthermore, in areas which are already naturally fractured, the use of regular cement slurries causes fluid loss into the formation, which may give rise to failures cementations and formation damages. Commercially, there are alternatives to the development of lightweight cement slurries, but these fail either because of their enormous cost, or because the cement properties were not good enough for most general applications, being restricted to each transaction for which the cement paste was made, or both reasons. In this work a statistical design was made to determine the influence of three variables, defined as the calcium chloride concentration, vermiculite concentration and nanosilica concentration in the various properties of the cement. The use of vermiculite, a low density ore present in large amounts in northeastern Brazil, as extensor for cementing slurries, enabled the production of stable cements, with high water/cement ratio, excellent rheological properties and low densities, which were set at 12.5 lb / gal, despite the fact that lower densities could be achieved. It is also seen that the calcium chloride is very useful as gelling and thickening agent, and their use in combination with nanosilica has a great effect on gel strength of the cement. Hydrothermal Stability studies showed that the pastes were stable in these conditions, and mechanical resistance tests showed values of the order of up to 10 MPa
Resumo:
This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
This study has as a main objective to make a detailed stratigraphic analysis of the Aptian-Albian interval in the east part of Araripe Basin, NE of Brazil which correspond, litostratigraphically, to Rio Da Batateira, Crato, Ipubi and Romualdo formations. The stratigraphic analysis was based on three different stages, the 1D, 2D and 3D analysis; these ones were adapted to the sequence stratigraphy concepts in order to create a chronostratigraphic framework for the study area within the basin. The database used in the present study contains field and well information, wells that belong to Santana Project, carried out by the Ministério de Minas e Energia- DNPM- CPRM from 1977 to 1978. The analysis 1D, which was done separately for each well and outcrop allowed the recognition of 13 sedimentary facies, mainly divided based on predominant litologies and sedimentary structures. Such facies are lithologically represented by pebble, sandstones, claystones, margas and evaporates; these facies are associated in order to characterize different depositional systems, that integrate from the continental environment (fluvial system and lacustre), paralic system (delta system and lagunar) to the marine environment (shelfenvironment). The first one, the fluvial system was divided into two subtypes: meandering fluvial system, characterized by fill channel and floodplain deposits; the facies of this system are associated vertically according to the textural thinning upward cycles (dirting-up trend pattern in well logs). Lacustrine environment is mainly related with the lithotypes of the Crato Formation, it shows a good distribution within the basin, been composed by green claystone deposits and calcareous laminated. Deltaic System represented by prodelta and delta front deposits which coarsening upward tendency. Lagunar system is characterised by the presence of anhydrite and gypsum deposits besides the black claystone deposits with vegetal fragments which do not contain a fauna typically marine. The marine platform system is composed by successions of black and gray claystone with fossiliferous fauna of Dinoflagellates (Spiniferites Mantell, Subtilisphaera Jain e Subtilisphaera Millipied genre) typical of this kind of depositional system. The sedimentary facies described are vertically arranged in cycles with progradational patterns which form textural coersening upward cycles and retrogradational, represented by textural thinning dowward cycles. Based in these cycles, in their stack pattern and the vertical change between these patterns, the systems tracks and the depositional sequences were recognized. The Low System Track (LST) and High System Track (HST) are composed by cycles with progradational stack pattern, whereas the Trangessive System Track (TST) is composed by retrogradational stack pattern cycles. The 2D stratigraphic analysis was done through the carrying out of two stratigraphic sections. For the selection of the datum the deepest maximum flooding surface was chosen, inside the Sequence 1, the execution of these sections allowed to understand the behaviour of six depositional systems along the study area, which were interpreted as cycles of second order or supercycles (cycles between 3 and 10 Ma), according to the Vail, et al (1977) classification. The Sequence 1, the oldest of the six identified is composed by the low, transgressive and high systems tracks. The first two system tracks are formed exclusively by fluvial deposits of the Rio da Batateira Formation whereas the third one includes deltaic and lacustrine deposits of the Crato Formation. The sequences 2 and 3 are formed by the transgressive systems tracks (lake spreading phase) and the highstand system track (lake backward phase). The TST of these sequences are formed by lacustrine deposits whereas HST contains deltaic deposits, indicating high rates of sedimentary supply at the time of it s deposition. The sequence 4 is composed by LST, TST and HST, The TST4 shows a significant fall of the lake base level, this track was developed in conditions of low relation between the creation rate of space of accommodation and the sedimentary influx. The TST4 marks the third phase of expansion of the lacustrine system in the section after the basin´s rift, the lacustrine system established in the previous track starts a backward phase in conditions that the sedimentary supply rate exceeds the creation rate of space accommodation. The sequence 5 was developed in two different phases, the first one is related with the latest expansion stage of the lake, (TST5), the basal track of this sequence. In this phase the base level of the lake rose considerably. The second phase (related to the TST5) indicates the end of the lacustrine domain in the Araripe Basin and the change to lagunar system ant tidal flat, with great portions in the supratidal. These systems were formed by restricted lagoons, with shallow level of water and with intermittent connections with the sea. This, was the phase when the Araripe Basin recorded the most several arid conditions of the whole interval studied, Aptian Albian, conditions that allow the formation of evaporitic deposits. The sequence 6 began its deposition after a significant fall of the sea (LST6). The sequence 6 is without any doubtlessly, the sequence that has deposits that prove the effective entrance of the sea into the Araripe Basin. The TST6, end of this sequence, represents the moment which the sea reaches its maximum level during the Aptian Albian time. The stratigraphic analysis of the Aptian Albian interval made possible the understanding that the main control in the development of the depositional sequences recognized in the Araripe Basin were the variations of the local base level, which are controlled itself by the climate changes
Resumo:
The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences