3 resultados para Respiratory function tests
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Background: Obesity may affect the respiratory system, causing changes in respiratory function and in the pulmonary volumes and flows. Objectives: To evaluate the influence of obesity in the movement of thoracoabdominal complex at rest and during maximal voluntary ventilation (MVV), and the contribution between the different compartments of this complex and the volume changes of chest wall between obese and non-obese patients. Materials and Methods: We studied 16 patients divided into two groups: the obese group (n = 8) and group non-obese (n = 8). The two groups were homogeneous in terms of spirometric characteristics (FVC mean: 4.97 ± 0.6 L - 92.91 ± 10.17% predicted, and 4.52 ± 0.6 L - 93.59 ± 8.05%), age 25.6 ± 5.0 and 26.8 ± 4.9 years, in non-obese and obese respectively. BMI was 24.93 ± 3.0 and 39.18 ± 4.3 kg/m2 in the groups investigated. All subjects performed breathing calm and slow and maneuver MVV, during registration for optoelectronic plethysmography. Statistical analysis: we used the unpaired t test and Mann-Whitney. Results: Obese individuals had a lower percentage contribution of the rib cage abdominal (RCa) during breathing at rest and VVM. The variation of end expiratory (EELV) and end inspiratory (EILV) lung volumes were lower in obese subjects. It has been found asynchrony and higher distortion between compartments of thoracoabdominal complex in obese subjects when compared to non-obese. Conclusions: Central obesity impairs the ventilation lung, reducing to adaptation efforts and increasing the ventilatory work
Resumo:
Introduction: Obesity shows changes in pulmonary function and respiratory mechanics, however, little is known regarding the prevalence of worsening respiratory function when considering the increase in central or peripheral adiposity or general obesity. Objectives: To analyze the association between anthropometric adiposity and decreased lung function in obese. Materials and Methods: Patients eligible for this study obese individuals (IMC≥30kg/m2) in pre-bariatric surgery and referred for Treatment Clinic of Obesity and Related Diseases, located at the University Hospital Onofre Lopes (HUOL), from October 2005 and July 2014. The evaluation included clinical information and measurement of anthropometric measures (body mass index (BMI), body fat index (BFI) and waist circumference (WC) and neck (NC)) and spirometric. The prevalence and analysis by Poisson regression was performed considering the following outcome variables: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and Maximum Voluntary Ventilation (MVV) and as predictor variables were considered: BMI, IAC, WC and NC and as control variables: age, gender, smoking history and comorbidities (diabetes mellitus, dyslipidemia and hypertension). Statistical analysis was performed using Statistical Package for Social Sciences software (SPSS - version 20.0). Results: We analyzed 384 individuals, 75% women, mean BMI: 46.6 (± 8.7) kg/m2, IAC: 49.26 (± 9.48)%, WC: 130.84 (± 16.23) cm and NC: 42.3 (± 4.6) cm. The higher prevalence of FVC and FEV1 <80% was observed in individuals with NC above 42 cm, followed those with a BMI above 45 kg/m2. Multivariate analysis using Poisson regression showed as risk factors associated with FVC <80%, the variables: NC above 42 cm (odds ratio (OR) 2.41) and BMI over 45Kg/m2 (OR 1.71 ). As for FEV1 <80% predicted, all predictor variables were associated, with the largest odds presented by the NC (3.40). MVVV was not associated with any studied varaible. Conclusion: Individuals with NC above 42 cm had higher prevalence of reduced lung function and the NC was the measure with the highest association with reduced lung function in obese.
Resumo:
The reduction of physiological capacity present in the process of aging causes a marked decline in lung function. The exercise does promote several positive changes in the physical health of people and protect the cardiorespiratory function. The aim of this study was to investigate the effects of a program of Pilates exercices on the strengh and electrical activity of respiratory muscles of elderly. This is a randomized, controlled clinical trial, evaluating 33 elderly aged 65 and 80 (70.88 ± 4.32), healthy, sedentary, without cognitive impairment and able the practice physical activity. The sample was divided into two groups, one experimental group with 16 elderly women who did Pilates exercises and a control group (17) that was not submitted to the exercises, but received educational booklets on aging and health care. The elderly were evaluated initially and after a period of three months, taking into account the Maximal Inspiratory Pressure (MIP) and Maximal Expiratory Pressure (MEP), obtained by Manovacuometry and intensity of EMG activity was measured using the values of Root Mean Square (RMS) for the diaphragm and rectus abdominis muscles, during the course of diaphragmatic breathing and MIP maneuver. Data were analyzed using SPSS version 17.0. For all tests, we used a significance level or p value < 0.05 and confidence interval 95%. RMS in diaphragm and rectus abdominis muscles in both tests increased, but the data were significant for the rectus abdominis during diaphragmatic breathing (p = 0.03) and the diaphragm during the MIP maneuver (p = 0.01). There was no significant variation of the MIP and MEP. Pilates exercises were responsible for increasing the electrical activation of the diaphragm and rectus abdominis muscles in a group of healthy elderly, but had no influence on changes in strength of respiratory muscles