11 resultados para Resins of ionic exchange
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3
Resumo:
The crude glycerine is a raw material that can be used in a wide variety of products. Even with all the impurities inherent in the process of being obtained, the crude glycerin is already in a marketable product. However, the market is much more favorable to the commercialization of purified glycerine. The glycerin is a byproduct gotten from the process of transesterification of waste oils and fats in the production of biodiesel. More recently, the deployment of the new Federal Law of Brazil, related to the implementation of energy resources, forces, from 2008, the increase of 2% biodiesel in diesel common with prospects for 5% (B5). Therefore, it is indispensable that new routes of purification as well as new markets are developed. The objective of this work was to purify, through ion exchange, the crude glycerin, obtained from the reaction of transesterification of cottonseed oil. The cottonseed oil was characterized as the fatty acid composition and physical-chemical properties. The process of ion exchange was conducted in batch. In this process were used strong cation, low anion resins and a mixed resin used to de-ionize water. The purified glycerin was characterized as the content of metals. Tests were performed with activated charcoal adsorption, and for this, it was made tests of time contact with coal as well as quantity of coal used. The time of activation, the amount of the activation solution, the contact time of the glycerol solution in resins, the amount and type of resin applied were evaluated. Considering the analysis made with activated charcoal, when the glycerin solution was treated using the resins individually it was observed that in the conditions for treatment with 10 g of resin, 5 hours of contact with each resin and 50 mL of glycerin solution, its conductivity decreased to a cationic resin, increased to the anionic resin and had a variable value with respect to resin mixed. In the treatment in series, there was a constant decrease in the conductivity of the solution of glycerin. Considering two types of treatment, in series and individually, the content of glycerol in glycerin pre-purified solution with the different resins varied from 12,46 to 29.51% (diluted solution). In analysis performed without the use of activated charcoal, the behavior of the conductivity of the solution of glycerin were similar to results for treatment with activated charcoal, both in series as individually. The solution of glycerin pre-purified had a glycerol content varying from 8.3 to 25.7% (diluted solution). In relation to pH, it had a behavior in accordance with the expected: acid for the glycerin solution treated with cationic resin, basic when the glycerin solution was treated with the anionic resin and neutral when treated with the mixed resin, independent of the kind of procedure used (with or without coal, resins individually or in series). In relation to the color of the glycerin pre-purified solution, the resin that showed the best result was the anionic (colorless), however this does not mean that the solution is more in pure glycerol. The chromatographic analysis of the solutions obtained after the passage through the resins indicated that the treatment was effective by the presence of only one component (glycerol), not considering the solvent of the analysis
Resumo:
Two pillaring methods were tested to synthesize pillared clays containing mixed Al/Co pillars. Using the first method, based on the traditional procedure, were obtained materials containing different Co concentrations: 10, 25, 50, 75 and 100 % of Co in the pillaring solution. Just the experiments with low concentrations (10 and 25 % of Co) has formed pillared clays, whereas the sample with 25 % of cobalt showed best results compared with the one obtained just using Al as pillaring agent (basal spacing higher than 18 Å and surface area bigger than 300 m²/g). The 27Al NMR results pointed out the formation of mixed Al/Co pillars due to decreased between the intensities of AlVI/AlIV signals, indicating that the AlIV content decreased while Co content increased, suggesting the isomorphic substitution of Al atoms for Co in the Keggin ion structure (pillaring agent). For the samples containing 75 and 100 % of cobalt, it was verified the formation of others materials, which could be identified as hydrotalcite like compounds. The second pillarization method was named mixed layers, because the objective was to intercalate clay layers with hydrotalcite layers. Thus, after calcination, the hydrotalcite layers would dehydroxylate, resulting just in the metals oxides, intercalated between the clay sheets, thus generating, a pillared clay. For this purpose, were tested 4 synthesis procedures: physical mixture, mixture in water, ionic exchange under reflux and in situ synthesis. Of these, the method which showed the best results was the in situ synthesis, in which basal spacings of 14 Å (after calcination) were obtained, indicating that the samples are intercalated with metal oxides (Mg and Al). This procedure was reproduced with a Co-Al LDH (layered double hydroxide) and similar results were obtained, testifying the method reproducibility
Resumo:
The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.
Resumo:
I propose with this paper a reflection on the experiences contained in the creation of the body- in-art (FERRACINI, 2006a, b) that originated the show Rosmaninhos... This process was developed within the coletivo UZUME teatro from João Pessoa PB, through recreations and resignifications of the corporeity and physicality contained in the steps, loas, aboios, songs and choreography observed in the manners that Mestre Zequinha plays in his group of Cavalo Marinho (Sea Horse), resident in the city of Bayeux - PB, and starting from the appropriation of the text Hamlet of William Shakespeare. The body-in-art is understood in this work as a vectorial body that dilates its daily functionality, recognizing a potential learning area capable to generate creative escape lines that destabilize the "subject centered in an individuality and identity" (FOUCAULT apud FERRACINI, 2006b, p.14), being open to the differentiation of itself, indicating the possible existence of an itself-other and of the exchange-in-art space. This process of construction of the body-in-art based on Master Zequinha s ways of playing the Cavalo Marinho was methodically guided by the appropriation of the coletivo UZUME teatro of the stages of Observation, Codification and Theatricalization contained in the technique of corporal mimeses proposed by the LUME Teatro (Campinas - SP). That use resulted in two phases: Active Observation and Composition of the body-in-art. Through the repetition of these aesthetic matrixes of the Cavalo Marinho, the actors discovered actions that when, codified and organized, can configure their body-in-art, which created a vectorial exchange-in-art space to what was found in the Cavalo Marinho party. This search proposed the means of potentiating the actors' work when it comes to a preparation that allowed to dilate the scenic presence and stimulated the production of actions, which culminated in the mounting of the show Rosmaninhos...
Resumo:
-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)
Resumo:
The ionic plasma nitriding is one of the most important plasma assisted treatment technique for surface modification, but it presents some inherent problems mainly in nitriding pieces with complex geometries. In the last four years has appeared a plasma nitriding technique, named ASPN (Active Screen Plasma Nitriding) in which the samples and the workload are surrounded by a metal screen on which the cathodic potential is applied. This new technique makes possible to obtain a perfect uniform nitrided layer apart from the shape of the samples. The present work is based on the development of a new nitriding plasma technique named CCPN (Cathodic Cage Plasma Nitriding) Patent PI 0603213-3 derived from ASPN, but utilizes the hollow cathode effect to increase the nitriding process efficiency. That technique has shown great improvement on the treatment of several types of steels under different process conditions, producing thicker and harder layers when compared with both, ASPN and ionic plasma nitriding, besides eliminating problems associated with the later technique. The best obtained results are due to the hollow cathode effect on the cage holes. Moreover, characteristic problems of ionic plasma nitriding are eliminated due to the fact that the luminescent discharge acts on the cage wall instead of on the samples surface, which remains under a floating potential. In this work the enhancement of the cathodic cage nitriding layers proprieties, under several conditions for some types of steels was investigated, besides the mechanism for nitrides deposition on glass substrate, concluding that the CCPN is both a diffusion and a deposition process at the same time
Resumo:
Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water
Resumo:
The last years have presented an increase in the acceptance and adoption of the parallel processing, as much for scientific computation of high performance as for applications of general intention. This acceptance has been favored mainly for the development of environments with massive parallel processing (MPP - Massively Parallel Processing) and of the distributed computation. A common point between distributed systems and MPPs architectures is the notion of message exchange, that allows the communication between processes. An environment of message exchange consists basically of a communication library that, acting as an extension of the programming languages that allow to the elaboration of applications parallel, such as C, C++ and Fortran. In the development of applications parallel, a basic aspect is on to the analysis of performance of the same ones. Several can be the metric ones used in this analysis: time of execution, efficiency in the use of the processing elements, scalability of the application with respect to the increase in the number of processors or to the increase of the instance of the treat problem. The establishment of models or mechanisms that allow this analysis can be a task sufficiently complicated considering parameters and involved degrees of freedom in the implementation of the parallel application. An joined alternative has been the use of collection tools and visualization of performance data, that allow the user to identify to points of strangulation and sources of inefficiency in an application. For an efficient visualization one becomes necessary to identify and to collect given relative to the execution of the application, stage this called instrumentation. In this work it is presented, initially, a study of the main techniques used in the collection of the performance data, and after that a detailed analysis of the main available tools is made that can be used in architectures parallel of the type to cluster Beowulf with Linux on X86 platform being used libraries of communication based in applications MPI - Message Passing Interface, such as LAM and MPICH. This analysis is validated on applications parallel bars that deal with the problems of the training of neural nets of the type perceptrons using retro-propagation. The gotten conclusions show to the potentiality and easinesses of the analyzed tools.
Resumo:
Due to the increasing need to promote the use of resources that support the environment and the clean industry, the science has developed in the area of natural resource use as well as enhanced use of the renewable energy sources. Considering also the great need for clean water and wide availability of salt or brackish water, added to the great solar energy potential in northeastern of the Brazil, it was developed a solar distiller whose main difference is its system of pre-solar heating also. From experimental adjustments, the system was developed by the use of a cylindrical solar concentrator coupled to a conventional distiller. The system is designed such that attempt to facilitate the process termination trap to ensure constant movement of the fluid mass and thus enable higher temperatures to the system and thus fetch a higher amount of distillate collected. In a stage of the experiment were used a forced circulation to try to further increase the amount of energy exchange system. To develop the study were set up four settings for comparison in which one was only distiller simple as basic parameter, the second proposed configuration were with the coupling of the concentration triggered manually every 30 minutes to monitor the sun, the third configuration occurred with automatic triggering of a timer, and the fourth configuration was also used a pumping system that tried to improve the circulation of the fluid. With the comparative analysis of the results showed a gain in the amount of distillate system, especially in the forced model
Resumo:
Anhydrous ethanol is used in chemical, pharmaceutical and fuel industries. However, current processes for obtaining it involve high cost, high energy demand and use of toxic and pollutant solvents. This problem occurs due to the formation of an azeotropic mixture of ethanol + water, which does not allow the complete separation by conventional methods such as simple distillation. As an alternative to currently used processes, this study proposes the use of ionic liquids as solvents in extractive distillation. These are organic salts which are liquids at low temperatures (under 373,15 K). They exhibit characteristics such as low volatility (almost zero/ low vapor ), thermal stability and low corrosiveness, which make them interesting for applications such as catalysts and as entrainers. In this work, experimental data for the vapor pressure of pure ethanol and water in the pressure range of 20 to 101 kPa were obtained as well as for vapor-liquid equilibrium (VLE) of the system ethanol + water at atmospheric pressure; and equilibrium data of ethanol + water + 2-HDEAA (2- hydroxydiethanolamine acetate) at strategic points in the diagram. The device used for these experiments was the Fischer ebulliometer, together with density measurements to determine phase compositions. The experimental data were consistent with literature data and presented thermodynamic consistency, thus the methodology was properly validated. The results were favorable, with the increase of ethanol concentration in the vapor phase, but the increase was not shown to be pronounced. The predictive model COSMO-SAC (COnductor-like Screening MOdels Segment Activity Coefficient) proposed by Lin & Sandler (2002) was studied for calculations to predict vapor-liquid equilibrium of systems ethanol + water + ionic liquids at atmospheric pressure. This is an alternative for predicting phase equilibrium, especially for substances of recent interest, such as ionic liquids. This is so because no experimental data nor any parameters of functional groups (as in the UNIFAC method) are needed