4 resultados para Removal rate

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The groundwater pollution arising due to fuel leaks gas stations has presented a problem aggravating. Increasingly studies related to environmental problems such accidents and seek to propose some solutions for the treatment of groundwater and soils that are contaminated by gasoline. This study evaluated the use of molecular sieve TiSBA-15 as a catalyst for the reaction of removing of volatile organic compounds, particularly benzene, toluene, ethylbenzene and xylenes, known as BTEX, one of the main pollutants found in groundwater. The catalyst was synthesized by the method post-synthesis techniques and characterized by XSD, TG/DTG, adsorption/desorption of N2, XRF-EDX, for checking the incorporation of titanium and formation of the structure of the catalyst. The reaction occurred with the presence of hydrogen peroxide, H2O2, in aqueous medium to form hydroxyl radicals, which are needed in the process of removal of BTEX compounds. The catalytic reaction was carried out for 5 hours at 60 °C, pH to 3.0, and analyzes of the compounds were made in a gas chromatograph with a flame detection means photoionization static headspace (HS-GC-PID). The catalytic tests have shown the efficacy of using this type of catalyst for the removal of these volatile organic compounds, having a removal rate of 90.60% in the range where the catalyst was studied TiSBA-15(5,0)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermodynamic performance of a refrigeration system can be improved by reducing the compression work by a particular technique for a specific heat removal rate. This study examines the effect of small concentrations of Al2O3 (50 nm) nanoparticles dispersion in the mineral oil based lubricant on the: viscosity, thermal conductivity, and lubrication characteristics as well as the overall performance (based on the Second Law of Thermodynamics) of the refrigerating system using R134a or R600a as refrigerants. The study looked at the influences of variables: i) refrigerant charge (100, 110, 120 and 130 g), ii) rotational speed of the condenser blower (800 and 1100 RPM) and iii) nanoparticle concentration (0.1 and 0.5 g/l) on the system performance based on the Taguchi method in a matrix of L8 trials with the criterion "small irreversibility is better”. They were carried pulldown and cycling tests according to NBR 12866 and NBR 12869, respectively, to evaluate the operational parameters: on-time ratio, cycles per hour, suction and discharge pressures, oil sump temperature, evaporation and condensation temperatures, energy consumption at the set-point, total energy consumption and compressor power. In order to evaluate the nanolubricant characteristics, accelerated tests were performed in a HFRR bench. In each 60 minutes test with nanolubricants at a certain concentration (0, 0.1 and 0.5 g/l), with three replications, the sphere (diameter 6.00 ± 0.05 mm, Ra 0.05 ± 0.005 um, AISI 52100 steel, E = 210 GPa, HRC 62 ± 4) sliding on a flat plate (cast iron FC200, Ra <0.5 ± 0.005 um) in a reciprocating motion with amplitude of 1 mm, frequency 20 Hz and a normal load of 1,96 N. The friction coefficient signals were recorded by sensors coupled to the HFRR system. There was a trend commented bit in the literature: a nanolubricant viscosity reduction at the low nanoparticles concentrations. It was found the dominant trend in the literature: increased thermal conductivity with increasing nanoparticles mass fraction in the base fluid. Another fact observed is the significant thermal conductivity growth of nanolubricant with increasing temperature. The condenser fan rotational speed is the most influential parameter (46.192%) in the refrigerator performance, followed by R600a charge (38.606%). The Al2O3 nanoparticles concentration in the lubricant plays a minor influence on system performance, with 12.44%. The results of power consumption indicates that the nanoparticles addition in the lubricant (0.1 g/L), together with R600a, the refrigerator consumption is reduced of 22% with respect to R134a and POE lubricant. Only the Al2O3 nanoparticles addition in the lubricant results in a consumption reduction of about 5%.