4 resultados para Remote Monitoring
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The traditional processes for treatment of hazardous waste are questionable for it generates other wastes that adversely affect people s health. As an attempt to minimize these problems, it was developed a system for treatment of hazardous waste by thermal plasma, a more appropriate technology since it produces high temperatures, preventing the formation of toxic pollutants to human beings. The present work brings out a solution of automation for this plant. The system has local and remote monitoring resources to ensure the operators security as well as the process itself. A special attention was given to the control of the main reactor temperature of the plant as it is the place where the main processing occurs and because it presents a complex mathematical model. To this, it was employed cascaded controls based on Fuzzy logic. A process computer, with a particular man-machine interface (MMI), provides information and controls of the plant to the operator, including by Internet. A compact PLC module is in charge of the central element of management automation and plant control which receives information from sensors, and sends it to the MMI
Resumo:
The great diversity in the architecture of biomedical devices, coupled with their different communication protocols, has hindered the implementation of systems that need to make access to these devices. Given these differences, the need arises to provide access to such a transparent manner. In this sense, this paper proposes an embedded architecture, service-oriented, for access to biomedical devices, as a way to abstract the mechanism for writing and reading data on these devices, thereby contributing to the increase in quality and productivity of biomedical systems so as to enable that, the focus of the development team of biomedical software, is almost exclusively directed to its functional requirements
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.