6 resultados para Reduced physical models
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The employment of flexibility in the design of façades makes them adaptable to adverse weather conditions, resulting in both minimization of environmental discomfort and improvement of energy efficiency. The present study highlights the potential of flexible façades as a resource to reduce rigidity and form repetition, which are usually employed in condominiums of standardized houses; as such, the work presented herein contributes to field of study of architectural projects strategies for adapting and integrating buildings within the local climate context. Two façade options were designed using as reference the bionics and the kinetics, as well as their applications to architectural constructions. This resulted in two lightweight and dynamic structures, which cater to constraints of comfort through combinations of movements, which control the impact of solar radiation and of cooling in the environment. The efficacy and technical functionality of the façades were tested with comfort analysis and graphic computation software, as well as with physical models. Thus, the current research contributes to the improvement of architectural solutions aimed at using passive energy strategies in order to offer both better quality for the users and for the sustainability of the planet
Resumo:
The geological modeling allows, at laboratory scaling, the simulation of the geometric and kinematic evolution of geological structures. The importance of the knowledge of these structures grows when we consider their role in the creation of traps or conduits to oil and water. In the present work we simulated the formation of folds and faults in extensional environment, through physical and numerical modeling, using a sandbox apparatus and MOVE2010 software. The physical modeling of structures developed in the hangingwall of a listric fault, showed the formation of active and inactive axial zones. In consonance with the literature, we verified the formation of a rollover between these two axial zones. The crestal collapse of the anticline formed grabens, limited by secondary faults, perpendicular to the extension, with a curvilinear aspect. Adjacent to these faults we registered the formation of transversal folds, parallel to the extension, characterized by a syncline in the fault hangingwall. We also observed drag folds near the faults surfaces, these faults are parallel to the fault surface and presented an anticline in the footwall and a syncline hangingwall. To observe the influence of geometrical variations (dip and width) in the flat of a flat-ramp fault, we made two experimental series, being the first with the flat varying in dip and width and the second maintaining the flat variation in width but horizontal. These experiments developed secondary faults, perpendicular to the extension, that were grouped in three sets: i) antithetic faults with a curvilinear geometry and synthetic faults, with a more rectilinear geometry, both nucleated in the base of sedimentary pile. The normal antithetic faults can rotate, during the extension, presenting a pseudo-inverse kinematics. ii) Faults nucleated at the top of the sedimentary pile. The propagation of these faults is made through coalescence of segments, originating, sometimes, the formation of relay ramps. iii) Reverse faults, are nucleated in the flat-ramp interface. Comparing the two models we verified that the dip of the flat favors a differentiated nucleation of the faults at the two extremities of the mater fault. V These two flat-ramp models also generated an anticline-syncline pair, drag and transversal folds. The anticline was formed above the flat being sub-parallel to the master fault plane, while the syncline was formed in more distal areas of the fault. Due the geometrical variation of these two folds we can define three structural domains. Using the physical experiments as a template, we also made numerical modeling experiments, with flat-ramp faults presenting variation in the flat. Secondary antithetic, synthetic and reverse faults were generated in both models. The numerical modeling formed two folds, and anticline above the flat and a syncline further away of the master fault. The geometric variation of these two folds allowed the definition of three structural domains parallel to the extension. These data reinforce the physical models. The comparisons between natural data of a flat-ramp fault in the Potiguar basin with the data of physical and numerical simulations, showed that, in both cases, the variation of the geometry of the flat produces, variation in the hangingwall geometry
Resumo:
The distribution and mobilization of fluid in a porous medium depend on the capillary, gravity, and viscous forces. In oil field, the processes of enhanced oil recovery involve change and importance of these forces to increase the oil recovery factor. In the case of gas assisted gravity drainage (GAGD) process is important to understand the physical mechanisms to mobilize oil through the interaction of these forces. For this reason, several authors have developed physical models in laboratory and core floods of GAGD to study the performance of these forces through dimensionless groups. These models showed conclusive results. However, numerical simulation models have not been used for this type of study. Therefore, the objective of this work is to study the performance of capillary, viscous and gravity forces on GAGD process and its influence on the oil recovery factor through a 2D numerical simulation model. To analyze the interplay of these forces, dimensionless groups reported in the literature have been used such as Capillary Number (Nc), Bond number (Nb) and Gravity Number (Ng). This was done to determine the effectiveness of each force related to the other one. A comparison of the results obtained from the numerical simulation was also carried out with the results reported in the literature. The results showed that before breakthrough time, the lower is the injection flow rate, oil recovery is increased by capillary force, and after breakthrough time, the higher is the injection flow rate, oil recovery is increased by gravity force. A good relationship was found between the results obtained in this research with those published in the literature. The simulation results indicated that before the gas breakthrough, higher oil recoveries were obtained at lower Nc and Nb and, after the gas breakthrough, higher oil recoveries were obtained at lower Ng. The numerical models are consistent with the reported results in the literature
Resumo:
Problems associated to longitudinal interactions in buried pipelines are characterized as three-dimensional and can lead to different soil-pipe issues. Despite the progress achieved in research on buried pipelines, little attention has been given to the three-dimensional nature of the problem throughout the last decades. Most of researches simplify the problem by considering it in plane strain condition. This dissertation aims to present a study on the behavior of buried pipelines under local settlement or elevation, using three-dimensional simulations. Finite element code Plaxis 3D was used for the simulations. Particular aspects of the numerical modeling were evaluated and parametric analyzes were performed, was investigated the effects of soil arching in three-dimensional form. The main variables investigated were as follows: relative density, displacement of the elevation or settlement zone, elevated zone size, height of soil cover and pipe diameter/thickness ratio. The simulations were performed in two stages. The first stage was involved the validation of the numerical analysis using the physical models put forward by Costa (2005). In the second stage, numerical analyzes of a full-scale pipeline subjected to a localized elevation were performed. The obtained results allowed a detailed evaluation of the redistribution of stresses in the soil mass and the deflections along the pipe. It was observed the reduction of stresses in the soil mass and pipe deflections when the height of soil cover was decreased on regions of the pipe subjected to elevation. It was also shown for the analyzed situation that longitudinal thrusts were higher than vi circumferential trusts and exceeded the allowable stresses and deflections. Furthermore, the benefits of minimizing stress with technical as the false trench, compressible cradle and a combination of both applied to the simulated pipeline were verified
Resumo:
The employment of flexibility in the design of façades makes them adaptable to adverse weather conditions, resulting in both minimization of environmental discomfort and improvement of energy efficiency. The present study highlights the potential of flexible façades as a resource to reduce rigidity and form repetition, which are usually employed in condominiums of standardized houses; as such, the work presented herein contributes to field of study of architectural projects strategies for adapting and integrating buildings within the local climate context. Two façade options were designed using as reference the bionics and the kinetics, as well as their applications to architectural constructions. This resulted in two lightweight and dynamic structures, which cater to constraints of comfort through combinations of movements, which control the impact of solar radiation and of cooling in the environment. The efficacy and technical functionality of the façades were tested with comfort analysis and graphic computation software, as well as with physical models. Thus, the current research contributes to the improvement of architectural solutions aimed at using passive energy strategies in order to offer both better quality for the users and for the sustainability of the planet
Resumo:
Regarding the growing number of human beings with physical and mental pathologies associated to different stressor agents, attempts are being made to validate animal models with a close phylogenetic resemblance to man, to study stress response. Callithrix jacchus has been widely used in biomedical research, including on stress, but there is scarce information in the literature about how individual and social factors modulate stressor response in this species. This study uses 4 approaches to investigate the response of male and female adult C. jacchus, under situations of stress, and in the first we show evidence of the importance of this animal as an experimental model in research involving the hypothalamus-pituitary-adrenal axis. And we investigate if sex and baseline cortisol levels modulate the behavioral and hormonal response to separation. In two additional approaches investigate if type of social support (co-specific parent or non-parent) and social rank interfere in behavioral and hormonal when the animal are exposure to a new environment, paired with a co-specific (F2), exposure of the animal to a new environment, isolated (F3) or during reunion (F4). Finally, we also investigated the androgen levels in the males, with a focus on the challenge hypothesis, referring to environmental responsiveness and male-male exposure to relatives and non-relatives of C. jacchus. It was observed that: (1) the baseline cortisol of the animal is predictive of cortisol reactivity at separation; (2) males and females do not show dimorphism in the response of cortisol to stressors, although the females have higher baseline levels of this hormone and exhibit higher frequencies of anxiety-related behaviors; (3) only social support provided by relatives proved to be effective in buffering the cortisol response. In behavioral terms this response was dimorphic, showing that only the male dyads displayed an attenuated response to stress; (4) the males showed differences in cortisol levels as a function of social rank and study phases, whereas in the females no such alterations were observed. The males with indefinite dominance hierarchy (IDH) had reduced cortisol in F2 and F4, while the IDH females showed an increase in F3 and F4; (5) the males of relative and non-relative dyads did not exhibit variations in androgen levels as a function of a new environment. These results, taken together, (a) corroborate the use of C. jacchus as a good animal model for stress-related studies, given that they exhibit similar behavioral and physiological alterations to those of human beings in response to stressor agents; (b) point to the importance of considering individual and social modulating factors during experiments with stressors; (c) provide more reliable comparison parameters in studies where these primates are used as animal models, and (d) show that androgens vary as a function of genetic proximity (relative or non-relative) when the animals are faced with physical and social environmental challenges, thus providing important information for studying the challenge hypothesis in this species