8 resultados para Recombination fingerprinting

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method to perform TCP/IP fingerprinting is proposed. TCP/IP fingerprinting is the process of identify a remote machine through a TCP/IP based computer network. This method has many applications related to network security. Both intrusion and defence procedures may use this process to achieve their objectives. There are many known methods that perform this process in favorable conditions. However, nowadays there are many adversities that reduce the identification performance. This work aims the creation of a new OS fingerprinting tool that bypass these actual problems. The proposed method is based on the use of attractors reconstruction and neural networks to characterize and classify pseudo-random numbers generators

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used ab initio calculations to investigate the electronic structure of SiGe based nanocrystals (NC s). This work is divided in three parts. In the first one, we focus the excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals. We also estimate the changes induced by the effect of strain the electronic structure. We show that Ge/Si (Si/Ge) NC s exhibits type II confinement in the conduction (valence) band. The estimated potential barriers for electrons and holes are 0.16 eV (0.34 eV) and 0.64 eV (0.62 eV) for Si/Ge (Ge/Si) NC s. In contradiction to the expected long recombination lifetimes in type II systems, we found that the recombination lifetime of Ge/Si NC s (τR = 13.39μs) is more than one order of magnitude faster than in Si/Ge NC s (τR = 191.84μs). In the second part, we investigate alloyed Si1−xGex NC s in which Ge atoms are randomly positioned. We show that the optical gaps and electron-hole binding energies decrease linearly with x, while the exciton exchange energy increases with x due to the increase of the spatial extent of the electron and hole wave functions. This also increases the electron-hole wave functions overlap, leading to recombination lifetimes that are very sensitive to the Ge content. Finally, we investigate the radiative transitions in Pand B-doped Si nanocrystals. Our NC sizes range between 1.4 and 1.8 nm of diameters. Using a three-levels model, we show that the radiative lifetimes and oscillator strengths of the transitions between the conduction and the impurity bands, as well as the transitions between the impurity and the valence bands are strongly affected by the impurity position. On the other hand, the direct conduction-to-valence band decay is practically unchanged due to the presence of the impurity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the way in which large-scale structures, like galaxies, form remains one of the most challenging problems in cosmology today. The standard theory for the origin of these structures is that they grew by gravitational instability from small, perhaps quantum generated, °uctuations in the density of dark matter, baryons and photons over an uniform primordial Universe. After the recombination, the baryons began to fall into the pre-existing gravitational potential wells of the dark matter. In this dissertation a study is initially made of the primordial recombination era, the epoch of the formation of the neutral hydrogen atoms. Besides, we analyzed the evolution of the density contrast (of baryonic and dark matter), in clouds of dark matter with masses among 104M¯ ¡ 1010M¯. In particular, we take into account the several physical mechanisms that act in the baryonic component, during and after the recombination era. The analysis of the formation of these primordial objects was made in the context of three models of dark energy as background: Quintessence, ¤CDM(Cosmological Constant plus Cold Dark Matter) and Phantom. We show that the dark matter is the fundamental agent for the formation of the structures observed today. The dark energy has great importance at that epoch of its formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria trom Shewanella and Geobacter ganera are the most studied iron-reducing microorganisms particularly due to their electron transport systems and contribution to some industrial and environmental problems, including steel corrosion, bioenergy and bioremediation of petroleum-impacted sites. The present study was focused in two ways: the first is an in silico comparative ecogenomic study of Shewanella spp. with sequenced genomes, and the second is an experimental metagenomic work to detect iron-reducing Shewanella through PCR-DGGE of a metabolic gene. The in silico study resulted in positive correIation between copy number of 16S rDNA and genome size in Shewanella spp., with clusters of rrn near lhe origin of replication. This way, the genus is inferred as opportunist. There are no compact genomes and their sequences length varied, ranging from 4306142 nt in S. amazonensis SB2B to 5935403 nt in S. woodyi ATCC 51908, without correIation to temperature range characteristic of each specie. Intragenomic 16S rDNA sequences possess little divergence, but reasonable to resuIt in different phyIogenetic trees, depending on the sequence that is chosen to compare. For moIecuIar detection of iron-reducing Shewanella, it is proposed the mtrB gene as new biomarker. because it codes to a fundamental protein at Fe (III)-reduction. The specific primers were designed and evaluated in silico and resulted in a fragment of 360 pb. In the second study, these primers were tested in a genomic sample from S. oneidensis MR-1, amplifying the expected region. After this successfuI resuIt, the primer set was used as a tool to assess the iron-reducing communities of ShewaneIla genus under an environmental stress, i.e. crude oil contamination in mangrove sediment in Rio Grande do Norte State (Brazil). The primers presented high specificity and the reactions performed resulted in one single band of ampIification in the metagenomic samples. The fingerprinting obtained at DGGE reveaIed temporal variation of Shewanella spp. in analyzed samples. The resuIts presented show the detection of a biotechnological important group of microorganisms, the iron-reducing Shewanella spp. using a metabolic gane as target. It is concluded there are eight or more 16S rDNA sequences in Shewanella genus, with little divergence among them that affects the phylogeny; the pair of primers designed to ampIify mtrB sequences is a viable alternative to detect iron-reducing ShewanelIa in metagenomic approaches; such bacteria are present in the mangrove sediment anaIyzed, with temporal variations in the samples. This is the first experimental study that screened the iron-reducing Shewanella genus in a metagenomic experiment of mangrove sediments subjected to oil contamination through a key metabolic gene

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a algorithmic study of Multicast Packing Problem considering a multiobjective approach. The first step realized was an extensive review about the problem. This review serverd as a reference point for the definition of the multiobjective mathematical model. Then, the instances used in the experimentation process were defined, this instances were created based on the main caracteristics from literature. Since both mathematical model and the instances were definined, then several algoritms were created. The algorithms were based on the classical approaches to multiobjective optimization: NSGA2 (3 versions), SPEA2 (3 versions). In addition, the GRASP procedures were adapted to work with multiples objectives, two vesions were created. These algorithms were composed by three recombination operators(C1, C2 e C3), two operator for build solution, a mutation operator and a local search procedure. Finally, a long experimentation process was performed. This process has three stages: the first consisted of adjusting the parameters; the second was perfomed to indentify the best version for each algorithm. After, the best versions for each algorithm were compared in order to identify the best algorithm among all. The algorithms were evaluated based on quality indicators and Hypervolume Multiplicative Epsilon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hiker Dice was a game recently proposed in a software designed by Mara Kuzmich and Leonardo Goldbarg. In the game a dice is responsible for building a trail on an n x m board. As the dice waits upon a cell on the board, it prints the side that touches the surface. The game shows the Hamiltonian Path Problem Simple Maximum Hiker Dice (Hidi-CHS) in trays Compact Nth , this problem is then characterized by looking for a Hamiltonian Path that maximize the sum of marked sides on the board. The research now related, models the problem through Graphs, and proposes two classes of solution algorithms. The first class, belonging to the exact algorithms, is formed by a backtracking algorithm planed with a return through logical rules and limiting the best found solution. The second class of algorithms is composed by metaheuristics type Evolutionary Computing, Local Ramdomized search and GRASP (Greed Randomized Adaptative Search). Three specific operators for the algorithms were created as follows: restructuring, recombination with two solutions and random greedy constructive.The exact algorithm was teste on 4x4 to 8x8 boards exhausting the possibility of higher computational treatment of cases due to the explosion in processing time. The heuristics algorithms were tested on 5x5 to 14x14 boards. According to the applied methodology for evaluation, the results acheived by the heuristics algorithms suggests a better performance for the GRASP algorithm