19 resultados para Reator biológico

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existem fortes evidências de que os programas de rastreamento baseados em citologia resultaram em diminuição significativa da incidência e mortalidade por câncer do colo do útero, no entanto, um excesso substancial de tratamento de lesões intraepiteliais de baixo grau que dificilmente progrediriam para carcinoma cervical resulta da baixa especificidade do tradicional rastreio citológico. A detecção precoce das lesões através do rastreamento citológico e a avaliação do grau histológico em espécimes cervicais são fundamentais, entretanto não permitem identificar quais pacientes terão maior probabilidade de progressão para lesões de alto grau e carcinoma invasivo. A busca de potenciais marcadores de prognóstico; objetivando o entendimento da progressão das lesões intraepiteliais é de suma importância. Acredita-se que fatores imunoregulatórios, imunogenéticos e proteínas do ciclo celular estejam intimamente envolvidos no processo de carcinogênese. Considerando o exposto, a proposta do projeto foi inicialmente avaliar a eficácia da citologia oncológica no rastreamento do câncer cervical, foi investigado ainda o polimorfismo do gene do fator de transcrição FOXP3 e a expressão da proteína do ciclo celular P63 (P63) associados respectivamente a diagnóstico e prognóstico das lesões cervicais. Em um primeiro momento foi realizado estudo transversal que envolveu 3194 mulheres. As participantes foram submetidas à citologia e biópsia de colo dirigida por colposcopia e os resultados foram comparados para verificar-se a acurácia do teste de Papanicolaou na detecção de lesões intraepiteliais e câncer cervical. Posteriormente, realizou-se estudo comparativo do tipo observacional estratificado em três grupos: Grupo 1: 16 casos com diagnóstico histopatológico de metaplasia/cervicite, considerados normais, Grupo 2: 11 casos com lesão de baixo grau (LSIL) e Grupo 3: 15 casos com lesão de alto grau (HSIL) ou carcinoma epidermoide de colo. Um total de 42 participantes respondeu a um questionário epidemiológico padronizado sobre as características demográficas, hábitos pregressos, história reprodutiva e de comportamento sexual. Após exame colposcópico, foram coletados fragmentos de espécimes cervicais para a pesquisa da expressão proteica da P63 por imunohistoquímica. Amostras de sangue periférico foram coletadas para extração do DNA e detecção do polimorfismo do gene FOXP3. No primeiro estudo em que se avaliou a acurácia do teste de Papanicolaou, encontrou-se sensibilidade de 0,83, valor preditivo positivo (VPP) de 0,77 e especificidade de 0,23 no rastreamento das lesões cervicais e câncer de colo. viii Melhores resultados foram observados quando se avaliou a acurácia diagnóstica para lesões de alto grau e carcinoma com VPP de 0,99 e especificidade de 0,84.No estudo subsequente onde se comparou a expressão da proteína P63 observou-se maior número de núcleos marcados no grupo com lesões intraepiteliais de alto grau e câncer quando comparado ao grupo com biópsias negativas (p=0,0004). No último estudo pesquisou-se a associação do polimorfismo do gene FOXP3 com lesões intraepiteliais cervicais sendo evidenciada maior prevalência do genótipo heterozigoto, CT, no grupo com lesões de colo na histopatologia (p=0,027). Mulheres com lesões intraepiteliais de baixo ou alto grau e câncer de colo de útero apresentam maior expressão da proteína P63 e maior prevalência de genótipo heterozigoto do gene FOXP3 em comparação com as sem lesões cervicais. A associação da pesquisa da expressão da proteína e do polimorfismo do gene pode tornar os exames utilizados atualmente para a avaliação diagnóstica e prognóstica das lesões de colo uterino mais efetivos em detectar quais as mulheres com maior risco para progressão para câncer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma produced by Dielectric Barrier Discharge (DBD) is a promising technique for producing plasma in atmospheric pressure and has been highlighted in several areas, especially in biomedical and textile industry, this is due to the fact that the plasma generated by DBD not reaches high temperatures, enabling use it for thermally sensitive materials. But still it is necessary the development of research related to understanding of the chemical, physical and biological interaction between the non-thermal plasma at atmospheric pressure with cells, tissues, organs and organisms. This work proposes to develop equipment DBD and characterize it in order to obtain a better understanding of the process parameters of plasma production and how it behaves under the parameters adopted in the process, such as distance, frequency and voltage applied between electrodes. For this purpose two techniques were used to characterize distinct from each other. The first was the method of Lissajous figures, this technique is quite effective and accurately for complete electrical characterization equipment DBD. The second technique used was Optical Emission Spectroscopy (EEO) very effective tool for the diagnosis of plasma with it being possible to identify the excited species present in the plasma produced. Finally comparing the data obtained by the two techniques was possible to identify a set of parameters that optimize the production when combined DBD plasma atmosphere in the equipment was built precisely in this condition 0.5mm-15kV 600Hz, giving way for further work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of ion nitriding, despite being fully consolidated in the industry, has great limitations when applied to the treatment of small parts. This is because effects that occur due to non-uniformity of the electric field, generate localized heating in parts, damaging the uniformity of nitrided layer. In addition, because the samples are treated static parts thereof are untreated. To expand the use of plasma nitriding, this work presents the development, assembly and testing of a prototype plasma reactor with rotatory cathodic cage [patent pending], able to meet these needs, giving the material a uniform treatment and opening doors to industrial scale production. The samples tested with hexagonal nuts are 6.0 mm in diameter, made of stainless steel AISI 304 nitrided at a pressure of 1 mbar in an atmosphere of 20% H2 + 80% N2 for 1 h. After treatment, testing visual inspection, optical microscopy and microhardness were carried out to check the effectiveness of the process for uniformity and hardness of the parts. All samples exhibited uniform color, and matte brownish, unlike the untreated samples, silver color and gloss. The hardness of the surface (top and sides) was 65% and even higher than the original hardness. The nitrided layer showed great uniformity in microstructure and thickness. It is concluded, therefore, that the unit was effective constructed for the purposes for which it was designed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported catalysts of CuCl2 on sílica were used in the methane oxychlorination reaction. The materials were synthesized by the ion exchange technique in a basic solution, using a copper-ammonia complex with 3 and 6 % of nominal copper loading. The materials where characterized by thermogravimetry (TG), X-ray Fluorescence Spectroscopy (XRF), Temperature Programmed Reduction (TPR), Scanning Electron Microscopy with X-ray microanalysis (SEM/EDS), BET specific area and pore distribution. The characterization confirms the presence of copper on the support surface, concluding that the ion exchange technique was adequate in the catalyst synthesis. For the reaction test, an oxychlorination bench scale unit was employed. The tests were carried at 673 and 773 K. The results showed the influence of temperature and catalyst copper content on the oxychlorination of methane reaction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at the implementation and adaptation of a computational model for the study of the Fischer-Tropsch reaction in a slurry bed reactor from synthesis gas (CO+H2) for the selective production of hydrocarbons (CnHm), with emphasis on evaluation of the influence of operating conditions on the distribution of products formed during the reaction.The present model takes into account effects of rigorous phase equilibrium in a reactive flash drum, a detailed kinetic model able of predicting the formation of each chemical species of the reaction system, as well as control loops of the process variables for pressure and level of slurry phase. As a result, a system of Differential Algebraic Equations was solved using the computational code DASSL (Petzold, 1982). The consistent initialization for the problem was based on phase equilibrium formed by the existing components in the reactor. In addition, the index of the system was reduced to 1 by the introduction of control laws that govern the output of the reactor products. The results were compared qualitatively with experimental data collected in the Fischer-Tropsch Synthesis plant installed at Laboratório de Processamento de Gás - CTGÁS-ER-Natal/RN

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the state of Rio Grande do Norte (RN), Brazil, there are about 80 sewage treatment systems being the predominant technology waste stabilization ponds. The Baldo s WWTP , due to its location and low availability of area, was designed as a hybrid conventional system (UASB reactor followed by activated sludge with biodiscs) at a tertiary level, being the most advanced WWTP in the State and also with the larger treatment capacity (1620 m3/h) .The paper presents the results of its performance based on samples collections from May to December 2012. Composite samples of the effluent of the grit chamber, UASB reactors, anoxic chambers, aeration tanks and treated effluent were collected weekly, every 4 hours for 24 hours. The results showed that the WWTP effluent presented adequate ranges of temperatures, pH and DO, however removal efficiencies of BOD and TSS were below the predicted by design. The UASB reactors also showed removals of BOD and TSS less than expected, due to the accumulation of sludge in the reactors, which eventually, was washed out in the effluent. The nitrification process was not satisfactory mainly due to problems in the oxygen distribution in the aeration tanks. The removal of ammonia and TKN were high, probably by the assimilation process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.