2 resultados para Raymond
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Rare earth elements have recently been involved in a range of advanced technologies like microelectronics, membranes for catalytic conversion and applications in gas sensors. In the family of rare earth elements like cerium can play a key role in such industrial applications. However, the high cost of these materials and the control and efficiencies associated processes required for its use in advanced technologies, are a permanent obstacle to its industrial development. In present study was proposed the creation of phases based on rare earth elements that can be used because of its thermal behavior, ionic conduction and catalytic properties. This way were studied two types of structure (ABO3 and A2B2O7), the basis of rare earths, observing their transport properties of ionic and electronic, as well as their catalytic applications in the treatment of methane. For the process of obtaining the first structure, a new synthesis method based on the use of EDTA citrate mixture was used to develop a precursor, which undergone heat treatment at 950 ° C resulted in the development of submicron phase BaCeO3 powders. The catalytic activity of perovskite begins at 450 ° C to achieve complete conversion at 675 ° C, where at this temperature, the catalytic efficiency of the phase is maximum. The evolution of conductivity with temperature for the perovskite phase revealed a series of electrical changes strongly correlated with structural transitions known in the literature. Finally, we can establish a real correlation between the high catalytic activity observed around the temperature of 650 ° C and increasing the oxygen ionic conductivity. For the second structure, showed clearly that it is possible, through chemical processes optimized to separate the rare earth elements and synthesize a pyrochlore phase TR2Ce2O7 particular formula. This "extracted phase" can be obtained directly at low cost, based on complex systems made of natural minerals and tailings, such as monazite. Moreover, this method is applied to matters of "no cost", which is the case of waste, making a preparation method of phases useful for high technology applications
Resumo:
Mira and R Coronae Borealis (R CrB) variable stars are evolved objects surrounded by circumstellar envelopes (CSE) composed of the ejected stellar material. We present a detailed high-spatial resolution morfological study of the CSE of three stars: IRC+10216, the closest and more studied Carbon-Rich Mira; o Ceti, the prototype of the Mira class; and RY Sagitarii (RY Sgr), the brightest R CrB variable of the south hemisphere. JHKL near-infrared adaptive optics images of IRC+10216 with high dynamic range and Vband images with high angular resolution and high depth, collected with the VLT/NACO and VLT/FORS1 instruments, were analyzed. NACO images of o Ceti were also analyzed. Interferometric observations of RY Sgr collected with the VLTI/MIDI instrument allowed us to explore its CSE innermost regions (»20 40 mas). The CSE of IRC+10216 exhibit, in near-infrared, clumps with more complex relative displacements than proposed in previous studies. In V-band, the majority of the non-concentric shells, located in the outer CSE layers, seem to be composed of thinner elongated shells. In a global view, the morphological connection between the shells and the bipolar core of the nebulae, located in the outer layers, together with the clumps, located in the innermost regions, has a difficult interpretation. In the CSE of o Ceti, preliminar results would be indicating the presence of possible clumps. In the innermost regions (.110 UA) of the CSE of RY Sgr, two clouds were detected in different epochs, embedded in a variable gaussian envelope. Based on a rigorous verification, the first cloud was located at »100 R¤ (or »30 AU) from the centre, toward the east-north-east direction (modulo 180o) and the second one was almost at a perpendicular direction, having aproximately 2£ the distance of the first cloud. This study introduces new constraints to the mass-loss history of these kind of variables and to the morphology of their innermost CSE regions