3 resultados para RHODIUM-CATALYZED HYDROFORMYLATION

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reality of water resources management in semiarid regions, such as the Seridó region, has been shaped by a complex chain involving social-cultural, political, economic and environmental aspects, covering different spheres of activity - from local to federal. Because water is a scarce element, the most rational way pointed out by our recent history has been to move towards an increasing emphasis on the need for a truly rational, integrated, sustainable and participatory water resources management, supported by legislation and by a network of institutions that could materialize it. In this sense, despite all the advances in the formulation of public policies in water resources, which ones have indeed lead to significant changes that have occurred or are underway in semiarid regions such as Seridó? What factors may be preventing the realization of the desires rationality embedded in the framers of water policies intents? How to properly manage water resources if the current actors who promote their management and the political, human, cultural and institutional processes that intervene in this management, show strong traces of unsustainability? The research methodology adopted in this paper led to a breakdown of the traditional approach to water resource management, to integrate it into other areas of knowledge, especially to political science and public administration, catalyzed by the concept of "sustainable development". From a broad, interdisciplinary literature review, an exhaustive characterization of the river basin Seridó, a set of interviews with key people in the public administration acting in the region, a series of diagnoses and a set of propositions were made in order to correct the direction of current public policies for the region. From the point of view of public policies, it is in the deployment phase, not in its formulation, which lies a major problem of the lack of significant progress in water management. The lack of coordination between government programs are well characterized, as well as the lack of efficiency and effectiveness of their actions. The causes of this secular model are also discussed, including political factors and social relations of production, which led to a stalemate difficult, but of possible solution. It can be perceived there is a scenario of progressive deterioration of natural resources of the fragile ecosystem and a network of environmental and social consequences difficult to reverse, the result of a persistent and inertial sociopolitical culture, whose main factors reinforce itself. The work leads towards a characterization of the water resources management also from the perspective of environmental, institutional, political and human sustainability , the latter being identified, particularly as investment in the development of people as autonomous beings - not based in ideological directives of any kind - in the emancipation of the traditional figure of the poor man of the hinterland" to the "catalyst for change" responsible for their own decisions or omissions, based upon an education for free-thinking that brings each one as co-responsible epicenter of (self-) sustainable changes in their midst

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel