4 resultados para RESERVOIR-INDUCED SEISMICITY

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seismic activity in the Northeastern of Brazil has been a constant target of study, since it is the most active region of the country. However, some areas have their earthquakes related to human action, what means they are induced. The Açu dam is a classic example of reservoir-induced seismicity and it has been the subject of several studies. Recently, after a considerable period of inactivity, the LabSis / UFRN recorded events related to the dam, which led to the installation of a network around the reservoir. From the data provided by this network, it was observed that the seismic activity is related to a new epicental area inside the lake. The epicentral parameters and the focal mechanism were determined. It was found that the events were related to the reactivation of a basement structure in a new seismogenic subvertical fault with NE-SW-striking subparallel to the São Rafael Fault. These results were used in the preparation of a scientific paper, which discussed the relationship between this seismicity with the geology of the region and with the reservoir water level. The paper showed that the diffusion of pore pressure was the main mechanism that controlled the triggering of the induced seismicity at the reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seismic activity in the Northeastern of Brazil has been a constant target of study, since it is the most active region of the country. However, some areas have their earthquakes related to human action, what means they are induced. The Açu dam is a classic example of reservoir-induced seismicity and it has been the subject of several studies. Recently, after a considerable period of inactivity, the LabSis / UFRN recorded events related to the dam, which led to the installation of a network around the reservoir. From the data provided by this network, it was observed that the seismic activity is related to a new epicental area inside the lake. The epicentral parameters and the focal mechanism were determined. It was found that the events were related to the reactivation of a basement structure in a new seismogenic subvertical fault with NE-SW-striking subparallel to the São Rafael Fault. These results were used in the preparation of a scientific paper, which discussed the relationship between this seismicity with the geology of the region and with the reservoir water level. The paper showed that the diffusion of pore pressure was the main mechanism that controlled the triggering of the induced seismicity at the reservoir.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes brittle deformation and seismicity in the Castanhão Dam region, Ceará State, Brazil. This reservoir will include a hidroeletric power plant and will store about 6,7 billions m3 of water. Five main litostratigraphic unit were identified in the region: gneissic-migmatitic basement, metavolcanosedimentary sequence, granitoid plutons of Brasiliano age, Mesozoic basaltic dike swarm, and Cenozoic fluvial terraces of the Jaguaribe river. The region has experienced several faulting events that occurred at different crustal levels. Faults formed at depths less than about 12 km present left-lateral movement and are associated with epidote and quartz infillings. Faults formed at depths less than 7 km are mainly strike-slip present cataclastic rocks, fault breccia and gouge. Both fault groups form mainly NE-trendind lineaments and represent reactivation of ductile shear zones or new formed faults that cut across existing structures. Seismically-induced liquefaction fractures take place in Cenozoic terraces and indicate paleoearthquakes that may have reached at leat 6,8 MS. In short, this work indicate that the level of paleoseismicity is much greater than one observed in the instrumental record. Several faults are favourably oriented for reactivation and induced seismicity should be expected after the Castanhão Dam impoudment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydraulic fracturing is an operation in which pressurised fluid is injected in the geological formation surrounding the producing well to create new permeable paths for hydrocarbons. The injection of such fluids in the reservoir induces seismic events. The measurement of this reservoir stimulation can be made by location these induced microseismic events. However, microseismic monitoring is an expensive operation because the acquisition and data interpretation system using in this monitoring rely on high signal-to-noise ratios (SNR). In general, the sensors are deployed in a monitoring well near the treated well and can make a microseismic monitoring quite an expensive operation. In this dissertation we propose the application of a new method for recording and location of microseismic events called nanoseismic monitoring (Joswig, 2006). In this new method, a continuous recording is performed and the interpreter can separate events from noise using sonograms. This new method also allows the location of seismic sources even when P and S phases onsets are not clear like in situations of 0 dB SNR. The clear technical advantage of this new method is also economically advantageous since the sensors can potentially be installed on the surface rather than in observation well. In this dissertation field tests with controlled sources were made. In the first test small explosives using fire works at 28 m (slant distances) were detected yealding magnitudes between -2.4 ≤ ML ≤ -1.6.. In a second test, we monitored perforation shots in a producing oil field. In this second test, one perforation shot was located with slant distances of 861 m and magnitude 2.4 ML. Data from the tests allow us to say that the method has potential to be used in the oil industry to monitor hydrofracture