4 resultados para Quality factor meters

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents an analysis of the annular ring microstrip antennas printed on uniaxial anisotropic substrates and with superstrate.The analysis uses the full-wave formulation by means of the Hertz vector potentials method, in the Hankel transform domain. The definition of the Hertz vector potentials and the application of the appropriate boundary conditions to the structure allow determining the dyadic Green functions, relating the current densities in the conducting patch to the transforms of the tangential electric field components. Galerkin s method is then used to obtain the matrix equation whose nontrivial solution gives the complex resonant frequency of the antenna. From the modeling, it is possible to obtain results for the resonant frequency, bandwidth and quality factor, as a function of several parameters of the antenna, for different configurations. We have considered annular ring microstrip antennas on a single dielectric layer, antennas with two anisotropic dielectric layers, and annular ring microstrip antennas on suspended substrates. Numerical results for the resonant frequency of the these structures printed on isotropic substrates are also presented and compared with those published by other authors, showing a good agreement

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal elements in planar microstrip structures. In particular, microstrip antennas and frequency selective surfaces (FSSs) had changed its conventional elements to fractal shapes. For microstrip antennas, was used as the radiating element of Minkowski fractal. The feeding method used was microstrip line. Some prototypes were built and the analysis revealed the possibility of miniaturization of structures, besides the multiband behavior, provided by the fractal element. In particular, the Minkowski fractal antenna level 3 was used to exploit the multiband feature, enabling simultaneous operation of two commercial tracks (Wi-Fi and WiMAX) regulated by ANATEL. After, we investigated the effect of switches that have been placed on the at the pre-fractal edges of radiating element. For the FSSs, the fractal used to elements of FSSs was Dürer s pentagon. Some prototypes were built and measured. The results showed a multiband behavior of the structure provided by fractal geometry. Then, a parametric analysis allowed the analysis of the variation of periodicity on the electromagnetic behavior of FSS, and its bandwidth and quality factor. For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft DesignerTM and a vector network analyzer, Agilent N5230A model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic wave dispersion and attenuation studies have become an important tool for lithology and fluid discrimination in hydrocarbon reservoirs. The processes associated to attenuation are complex and are encapsulated in a single quantitative description called quality factor (Q). The present dissertation has the objective of comparing different approaches of Q determination and is divided in two parts. Firstly, we made performance and robustness tests of three different approaches for Q determination in the frequency domain. They are: peak shift, centroid shift and spectral ratio. All these tests were performed in a three-layered model. In the suite of tests performed here, we varied the thickness, Q and inclination of the layers for propagation pulses with central frequency of 30, 40 and 60 Hz. We found that the centroid shift method is produces robust results for the entire suíte of tests. Secondly, we inverted for Q values using the peak and centroid shift methods using an sequential grid search algorithm. In this case, centroid shift method also produced more robust results than the peak shift method, despite being of slower convergence

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal and helical elements structures in planar microstrip. In particular, the frequency selective surfaces (FSSs) had changed its conventional elements to fractal and helical formats. The dielectric substrate used was fiberglass (FR-4) and has a thickness of 1.5 mm, a relative permittivity 4.4 and tangent loss equal to 0.02. For FSSs, was adopting the Dürer’s fractal geometry and helical geometry. To make the measurements, we used two antennas horns in direct line of sight, connected by coaxial cable to the vector network analyzer. Some prototypes were select for built and measured. From preliminary results, it was aimed to find practical applications for structures from the cascading between them. For FSSs with Dürer’s fractal elements was observed behavior provided by the multiband fractal geometry, while the bandwidth has become narrow as the level of iteration fractal increased, making it a more selective frequency with a higher quality factor. A parametric analysis allowed the analysis of the variation of the air layer between them. The cascading between fractal elements structure were considered, presented a tri-band behavior for certain values of the layer of air between them, and find applications in the licensed 2.5GHz band (2.3-2.7) and 3.5GHz band (3.3-3.8). For FSSs with helical elements, six structures were considered, namely H0, H1, H2, H3, H4 and H5. The electromagnetic behavior of them was analyzed separately and cascaded. From preliminary results obtained from the separate analysis of structures, including the cascade, the higher the bandwidth, in that the thickness of the air layer increases. In order to find practical applications for helical structures cascaded, the helical elements structure has been cascaded find applications in the X-band (8.0-12.0) and unlicensed band (5.25-5.85). For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft Designer and a vector network analyzer, Agilent N5230A model.