8 resultados para Pulse width modulated voltage source inverters

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800  pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800  pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research for better performance materials in biomedical applications are constants. Thus recent studies aimed at the development of new techniques for modification of surfaces. The low pressure plasma has been highlighted for its versatility and for being environmentally friendly, achieving good results in the modification of physic chemical properties of materials. However, it is requires an expensive vacuum system and cannot able to generate superficial changes in specific regions. Furthermore, it is limits their use in polymeric materials and sensitive terms due to high process temperatures. Therefore, new techniques capable of generating cold plasma at atmospheric pressure (APPJ) were created. In order to perform surface treatments on biomaterials in specific regions was built a prototype capable of generating a cold plasma jet. The prototype plasma generator consists of a high voltage source, a support arm, sample port and a nozzle through which the ionized argon. The device was formed to a dielectric tube and two electrodes. This work was varied some parameters such as position between electrodes, voltage and electrical frequency to verify the behavior of glow discharges. The disc of titanium was polished and there was a surface modification. The power consumed, length, intensity and surface modifications of titanium were analyzed. The energy consumed during the discharges was observed by the Lissajous figure method. To check the length of the jets was realized with Image Pro Plus software. The modifications of the titanium surfaces were observed by optical microscopy (OM ) and atomic force microscopy (AFM ). The study showed that variations of the parameters such as voltage, frequency and geometric position between the electrodes influence the formation of the plasma jet. It was concluded that the plasma jet near room temperature and atmospheric pressure was able to cause modifications in titanium surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great majority of analytical models for extragalactic radio sources suppose self-similarity and can be classified into three types: I, II and III. We have developed a model that represents a generalization of most models found in the literature and showed that these three types are particular cases. The model assumes that the area of the head of the jet varies with the jet size according to a power law and the jet luminosity is a function of time. As it is usually done, the basic hypothesis is that there is an equilibrium between the pressure exerted both by the head of the jet and the cocoon walls and the ram pressure of the ambient medium. The equilibrium equations and energy conservation equation allow us to express the size and width of the source and the pressure in the cocoon as a power law and find the respective exponents. All these assumptions can be used to calculate the evolution of the source size, width and radio luminosity. This can then be compared with the observed width-size relation for radio lobes and the power-size (P-D) diagram of both compact (GPS and CSS) and extended sources from the 3CR catalogue. In this work we introduce two important improvement as compared with a previous work: (1)We have put together a larger sample of both compact and extended radio sources

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Radical prostatectomy surgery is the best treatment currently adopted by detecting prostate cancer. The urinary incontinence is one more common and difficult to treat postoperative complications, which causes a negative impact on quality of life of the individual prostatectomy . The surface electrical nerve stimulation involves the transmission of electrical impulses from an external stimulator for peripheral nerve through surface electrodes attached to skin. It is an easy and efficient technique, widely used for pain relief, rehabilitation and muscle strengthening. Objective: To analyze the effect of T10-L2 percutaneous electrical stimulation, in individuals with urinary incontinence who underwent radical prostatectomy by the laparoscopic technique. Methods: Six patients had previously undergone radical prostatectomy were submitted to 20 sections of surface electrical stimulation with frequency of 4 Hz, pulse width of 1ms during 20 minutes. All subjects fillid a quality of life - International Consultation on Incontinence Questionnaire- Short FormI - ICIQ-SF questionnaire evaluating. Results: Results showed reduction in the use of the number of pads, number of leaks before and after treatment, and reduced voiding frequency and consequent improvement in quality of life. No side effects were reported. Conclusion: Percutanous electrical stimulation in T10-L2 may be an effective technique to treat urinary incontinence (UI) after radical prostatectomy video laparoscopy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the research and development of a Pulse Width Programmable Gain Integrating Amplifier. Two Pulse Width Programmable Gain Amplifier architectures are proposed, one based on discrete components and another based on switched capacitors. From the operating requirements defined for the study, parameters are defined and simulations are carried out to validate the architecture. Subsequently, the circuit and the software are developed and tested. It is performed the evaluation of the circuits regarding the two proposed architectures, and from that, an architecture is selected to be improved, aiming the development of an integrated circuit in a future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the development of an experimental study on a power supply of high frequency that provides the toch plasmica to be implemented in PLASPETRO project, which consists of two static converters developed by using Insulated Gate Bipolar Transistor (IGBT). The drivers used to control these keys are triggered by Digital Signal Processor (DSP) through optical fibers to reduce problems with electromagnetic interference (EMI). The first stage consists of a pre-regulator in the form of an AC to DC converter with three-phase boost power factor correction which is the main theme of this work, while the second is the source of high frequency itself. A series-resonant inverter consists of four (4) cell inverters operating in a frequency around 115 kHz each one in soft switching mode, alternating itself to supply the load (plasma torch) an alternating current with a frequency of 450 kHz. The first stage has the function of providing the series-resonant inverter a DC voltage, with the value controlled from the power supply provided by the electrical system of the utility, and correct the power factor of the system as a whole. This level of DC bus voltage at the output of the first stage will be used to control the power transferred by the inverter to the load, and it may vary from 550 VDC to a maximum of 800 VDC. To control the voltage level of DC bus driver used a proportional integral (PI) controller and to achieve the unity power factor it was used two other proportional integral currents controllers. Computational simulations were performed to assist in sizing and forecasting performance. All the control and communications needed to stage supervisory were implemented on a DSP