71 resultados para Província Borborema
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
Until some years ago, weathering geochronology was primarily based on the K-Ar and 40Ar/39Ar dating of supergene minerals. Recent advances in the analysis of supergene goethite by the (U-Th)/He method expanded the number of suitable minerals for such purpose, as well as the time of application for weathering geochronology. This study represents the first systematic approach in Brazil, combining both the 40Ar/39Ar e (U-Th)/He methodologies to improve the knowledge on the weathering and the age of nonfossiliferous sediments. Supported by geologic and geomorphologic correlations, we identified different types of weathering profiles occurring in the interior and coastal areas of northeastern Brazil. These profiles were correlated to main regional geomorphological domains: the Borborema Plateau , the Sertaneja Depression , and the Coastal Cuestas and Plains, and respective planation surfaces, which study is fundamental to understand the landscape evolution of the northern portion of the eastern Borborema Province. The depth and stratigraphic organization of the weathering profiles in each of the geomorphological domains permitted to establish that: (i) the profiles on the highlands that cap the Borborema Surface are deeper (up to 100 m) and can be considered as typical lateritic profiles; (ii) on the lowlands that form the Sertaneja Surface , the weathering profiles are shallow and poorly developed (2-5 m deep); (iii) the profiles along the coastal area are moderately developed (up to 25 m deep), and are characterized by thick saprolites and mottle zones. Aiming to establish the timing of the evolution of northeastern Brazil, we studied 29 weathering profiles representing distinct topographic levels of the Borborema Province, from the highlands to the coast, through the analysis of 248 grains of supergene manganese oxides using laser step-heating 40Ar/39Ar geochronology. Additionally, we applied the (U-Th)/He method in 20 weathering profiles, by dating 171 grains of supergene iron oxides and hydroxides. Geochronological results for 248 grains of manganese oxides analyzed by the 40Ar/39Ar method indicate that the weathering profiles in the study area record the history of weathering from the Oligocene to the Pleistocene, with ages in the order of 31.4 ± 1.0 Ma to 0.8 ± 0.4 Ma. Dating of 171 grains of goethite by the (U-Th)/He method yielded ages ranging from 43.2 ± 4.3 Ma to 0.8 ± 0.1 Ma, suggesting the weathering processes last from the Eocene to the Pleistocene. The precipitation of supergene goethite in this interval confirms the age of the weathering processes identified from the manganese oxides record. 105 goethite grains from 8 different occurrences of the Barreiras Formation were dated by the (U-Th)/He method. Five grains collected from the cement in the Barreiras Formation sandstones, in the Lagoa Salgada and Rio do Fogo coastal cuestas, yielded ages of 17.6 ± 1.8 Ma, 17.3 ± 1.7 Ma, 16.3 ± 1.6 Ma, 16.2 ± 1.6 Ma and 13.6 ± 1.4 Ma. Results of 69 goethite grains from authigenic pisoliths collected in 7 different localities also yielded concordant ages, varying from 17.8 ± 1.8 to 7.5 ± 0.8 Ma. Results obtained from 31 detrital grains are concordant in 3 distinct localities (Lagoa Salgada, Praia da Garças e Ponta Grossa); they vary in the range of 43.2 ± 4.3 to 21.6 ± 2.2 Ma, and indicate that the maximum age for the Barreiras Formation deposition is around 22 Ma. 40Ar/39Ar results for 15 manganese oxides grains associated with the Barreiras Formation weathering profiles, in 3 different localities, vary from 13.1 ± 0.9 to 7.7 ± 0.4 Ma, in the same range of ages obtained by the (U-Th)/He method. The systematic application of the 40Ar/39Ar and (U-Th)/He methods, respectively for manganese oxides and goethites, show that the Barreiras Formation sediments were already deposited since ca. 17 Ma, and that the weathering processes were active until ca. 7 Ma ago. The ages obtained from manganese oxides collected in the Cenozoic basalts (Macau Formation) also reveal a weathering history between 19 and 7 Ma, pointing to hot and humid conditions during most of the Miocene. 40Ar/39Ar ages yielded by manganese oxides associated with the Serra do Martins Formation vary from 14.1 ± 0.4 to 10.5 ± 0.3 Ma. On the other hand, (U-Th)/He ages from iron oxides/hydroxides collected in the Serra do Martins Formation mesas vary from 20.0 ± 2.0 to 5.5 ± 0.6 Ma, indicating that those sediments are older than 20 Ma. 40Ar/39Ar and (U-Th)/He results produced in this study are in agreement with paleoclimatic interpretations based on stable isotopes and clay index values measured in the Atlantic Ocean sediments, validating the use of weathering geochronology to investigate paleoclimatic variations. The direct dating of the Barreiras Formation permitted, for the first time, confident inferences on the age of the brittle deformation recorded by this sedimentary unit in the Rio Grande do Norte and Ceará states. The first event, syn-deposition, occurred during the early Miocene; an younger event, related to the post-depositional deformation of the Barreiras Formation, is associated with tectonic activity from the very early Miocene to the Holocene. In agreement with data from other areas, results obtained in this study reveal that the depth and complexity of the weathering profiles reflect the time of exposition of such areas to the weathering agents close to the surface. However, there is no clear relationship between ages vs. altitude. The depth and the stratigraphic organization of weathering profiles in northeastern Brazil, contrary to the southeastern Brazil pattern, do not vary toward the coast. In our study area, field observations reveal the presence of ancient, thick and complex lateritic profiles preserved in the sedimentary mesas on the Borborema Plateau, as younger, narrow and incipient ones occur in the dissected areas. Geochronological results obtained for these profiles yielded older ages on the high altitudes, and younger ages in the lowlands, suggesting the scarp retreatment is the most reliable model to explain the regional landscape evolution. However, in the coastal lowlands, the relatively older ages obtained indicate that more complexes processes were involved in the modeling of the local relief
Resumo:
The Northeast relief was described by the Pediplanation Model. This action discards the theoretical basis of post-Cretaceous tectonic evolution of the landscape. Through this model the Massif Pereiro - MP, Borborema Province, was established as part of the Tablelands Area Residual Sertanejos. The present work aims to establish the post- Cretaceous morphotectonic evolution of the MP by geomorphological and geological mapping using Geographic Information System, Remote Sensing and dating of sediments by Single Aliquot Regenerative-dose (SAR). The MP is contained in the core semi-arid, annual precipitation of 600-800 mm / year. The MP is NE-SW, is limited by Shear Zone Jaguaribe (ZCJ) and Portalegre Shear Zone (ZCPa), the same attitude, and crossed by several other shear zones. These shear zones show evidence of brittle Cenozoic reactivation, mostly as normal faults and shallow crustal level. The Quaternary sedimentation around the MP focuses on fault escarpments in a general pattern cascade, where ages decrease from the summits of the steep foothills. The ages of 51 sediment samples indicate a correlation with global climate following pulses: Last Interestadial-UI, the Last Glacial Maximum - LGM and the transition Pleistocene / Holocene, while the latter focus on 18 of 51 samples dated. This study also finds evidence of a new quaternary basin, here called Merejo Basin. Through these results it is concluded that no evidence of post-Cretaceous tectonic evolution of morphological MP, as their retreat along the fault scarps, invariably following the trend of the shear zones. The erosion of cliffs in large time scale is controlled by weakness zones generated by faults on the other hand the erosion of cliffs in short time, with the formation of deposits and colluvial horizons pedogenizados, has climate control. It was also found that in the study area there is a preponderance of past and current tectonic erosion processes on the morphological evolution
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
Crustal thickness and VP/VS estimates are essential to the studies of subsurface geological structures and also to the understanding of the regional tectonic evolution of a given area. In this dissertation, we use the Langston´s (1979) Receiver Function Method using teleseismic events reaching the seismographic station with angles close to the vertical. In this method, the information of the geologic structures close to the station is isolated so that effects related to the instrument response and source mechanics are not present. The resulting time series obtained after the deconvolution between horizontal components contains the larger amplitude referring to the P arrival, followed by smaller arrival caused by the reverberation and conversion of the P-wave at the base of the crust. We also used the HK-Stacking after Zhu & Kanamori (2000) to obtain crustal thickness and Vp/VS estimates. This method works stacking receiver functions so that the best estimates of crustal thickness and Vp/VS are found when the direct P, the Ps wave and the first multiple are coherently stacked. We used five broadband seismographic stations distributed over the Borborema Province, NE Brazil. Crustal thickness and Vp/VS estimates are consistent with the crust-mantle interface obtained using gravity data. We also identified crutal thickening in the NW portion of the province, close to Sobral/CE. Towards the center-north portion of the province, there is an evident crustal thinning which coincides with a geological feature consisting of an alignment of sedimentary basins known as the Cariris-Potiguar trend. Towards the NE portion of the province, in Solânea/PB and Agrestina/PE regions, occurs a crustal thickening and a systematic increase in the VP/VS values which suggest the presence of mafic rocks in the lower crust also consistent with the hypothesis of underplating in the region
Resumo:
It is presently assumed that the Borborema Province resulted from a complex collisional process associated with the convergent movement of plates, possibly involving amalgamation and accretion of microplates. This process was consolidated at the end of the Brasiliano event. It is investigated the possible limits for the tectonostratigraphic terranes in the northern portion of the province based on an integrated study of geological and gravity data. The study area comprises the portion of the Borborema Province located north of the Patos Lineament, limited by longitudes 33º00 W and 43º29 44"W and latitudes 1º36 S and 8º00 S. A revision of the regional geology allowed to identify areas presenting contrasting geological attributes, possibly representing different terranes whose limits are always shear zones of Brasiliano-age. The Sobral-Pedro II shear zone is the only one undoubtedly presenting geological attributes of sutures zones. The other shear zones are very likely associated with a geodinymic context of accretion, involving oblique collisions (docking), transcurrent and/or transforming sutures, and deep intracrustal shear zones. The gravity data contributed as a tool to identify strong lateral contrasts of density inside the upper crust possibly associated with crustal blocks tectonically juxtaposed. The dominant long wavelength anomaly in the Bouguer anomaly map is an expressive gradient, grossly parallel to the continental margin, caused by density variation across the crust-mantle interface in the transition from the continental crust to the oceanic crust originated by the separation between South America and Africa. Medium to small wavelength anomalies are due to intracrustal heterogeneities such as different Precambrian crustal blocks, Brasiliano-age granites and Mesozoic sedimentary basins. A regional-residual separation of the Bouguer anomaly map was performed in order to enhance in the residual map the effect due to intracrustal heterogeneities. The methodology used for this separation was a robust polinomial fitting. The inversion of residual gravity field resulted in a density contrast map (Δρ), in an equivalent layer that provided more accurated anomalies contours and consolidated the model which the sources of residual anomalies are located in the upper part of the present crust. Based on the coincidence of gravity lineaments in the residual map and Brasiliano shear zones, and using additional geological information, the following shear zones are proposed as limits between terranes: Patos shear zone, Sobral-Pedro II shear zone, Picuí-João Câmara shear zone, Remígio-Pocinhos shear zone, Senador Pompeu shear zone, Tauá shear zone, and Portalegre shear zone. Based on the geological/geophysical information it is attributed a higher level of confidence to the first three proposed limits(Patos, Sobral Pedro II, and Picuí-João Câmara shear zones). From west to east, these shear zones individualize the following terranes: Northwest of Ceará terrane, Central Ceará terrane, Tauá terrane, Orós-Jaguaribe terrane, Seridó terrane, and São José de Campestre terrane. In our study, the Rio Piranhas and Patos terranes are questioned because their previously proposed limits do not present good geological and gravimetric evidences. On the other hand, the previously proposed Cearense terrane is now subdivided into Central Ceará and Tauá terranes. Two residual gravity profiles located in the Seridó belt were interpreted using 2 ½ D direct gravity modeling. The main result of the modeling process is that all anomalies, with the exception of one, can be explained by outcroppring bodies, therefore restricted to the upper part of the present crust
Resumo:
The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.
Resumo:
Since 2005, geophysical surveys have been carried out in the Precambri-an Borborema Province, along two transects with 800 km long each one. A pool of Brazilian public universities and institutions has been acquired deep refrac-tion seismic, gravity and magnetotelluric, with the purpose to model the conti-nental lithosphere of the region. This paper present the gravity survey of the second transect, that crosses the Borborema Province from SW to NE, passing through the São Francisco Craton, Transversal and Meridional zones and Rio Grande do Norte Domain, in the Setentrional Zone. In this way, it cuts some important geologic structures, like the limit of the São Francis Craton and the Borborema Province, Paleozoic and Mesozoic sedimentary basins of Tucano, Jatobá and Potiguar and the extensive Pernambuco and Patos shear zones. Recognition techniques gravity sources in the subsurface, such as spectral analysis and Euler Deconvolution, were applied to the Bouguer anomalies, as well as their regional and residual components. These techniques provided in-formation on possible anomalous bodies, which correlated with pre-existing geological and geophysical data, subsidized a 2.5 D gravity modeling of the lithosphere beneath the Borborema Province and its southern limit with the São Francisco Craton.
Resumo:
The mantle transition zone is defined by two seismic discontinuities, nominally at 410 and 660 km depth, which result from transformations in the mineral olivine. The topography of these discontinuities provides information about lateral temperature changes in the transition zone. In this work, P-to-S conversions from teleseismic events recorded at 32 broadband stations in the Borborema Province were used to determine the transition zone thickness beneath this region and to investigate whether there are lateral temperature changes within this depth range. For this analysis, stacking and migration of receiver functions was performed. In the Borborema Province, geophysical studies have revealed a geoid anomaly which could reflect the presence of a thermal anomaly related to the origin of intraplate volcanism and uplift that marked the evolution of the Province in the Cenozoic. Several models have been proposed to explain these phenomena, which include those invoking the presence of a deep-seated mantle plume and those invoking shallower sources, such as small-scale convection cells. The results of this work show that no thermal anomalies are present at transition zone depths, as significant variations in the transition zone thickness were not observed. However, regions of depressed topography for both discontinuities (410 and 660 km) that approximately overlap in space were identified, suggesting that lower-thanaverage, lateral variations in seismic velocity above 410 km depth may exist below the the Borborema Province. This is consistent with the presence of a thermally-induced, low-density body independently inferred from analysis of geoid anomalies. Therefore, the magma source responsible for the Cenozoic intraplate volcanism and related uplift in the Province, is likely to be confined above the upper mantle transition zone.
Resumo:
Ambient seismic noise has traditionally been considered as an unwanted perturbation in seismic data acquisition that "contaminates" the clean recording of earthquakes. Over the last decade, however, it has been demonstrated that consistent information about the subsurface structure can be extracted from cross-correlation of ambient seismic noise. In this context, the rules are reversed: the ambient seismic noise becomes the desired seismic signal, while earthquakes become the unwanted perturbation that needs to be removed. At periods lower than 30 s, the spectrum of ambient seismic noise is dominated by microseism, which originates from distant atmospheric perturbations over the oceans. The microsseism is the most continuous seismic signal and can be classified as primary – when observed in the range 10-20 s – and secondary – when observed in the range 5-10 s. The Green‘s function of the propagating medium between two receivers (seismic stations) can be reconstructed by cross-correlating seismic noise simultaneously recorded at the receivers. The reconstruction of the Green‘s function is generally proportional to the surface-wave portion of the seismic wavefield, as microsseismic energy travels mostly as surface-waves. In this work, 194 Green‘s functions obtained from stacking of one month of daily cross-correlations of ambient seismic noise recorded in the vertical component of several pairs of broadband seismic stations in Northeast Brazil are presented. The daily cross-correlations were stacked using a timefrequency, phase-weighted scheme that enhances weak coherent signals by reducing incoherent noise. The cross-correlations show that, as expected, the emerged signal is dominated by Rayleigh waves, with dispersion velocities being reliably measured for periods ranging between 5 and 20 s. Both permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region are considered, resulting in a combined network of 33 stations separated by distances between 60 and 1311 km, approximately. The Rayleigh-wave, dispersion velocity measurements are then used to develop tomographic images of group velocity variation for the Borborema Province of Northeast Brazil. The tomographic maps allow to satisfactorily map buried structural features in the region. At short periods (~5 s) the images reflect shallow crustal structure, clearly delineating intra-continental and marginal sedimentary basins, as well as portions of important shear zones traversing the Borborema Province. At longer periods (10 – 20 s) the images are sensitive to deeper structure in the upper crust, and most of the shallower anomalies fade away. Interestingly, some of them do persist. The deep anomalies do not correlate with either the location of Cenozoic volcanism and uplift - which marked the evolution of the Borborema Province in the Cenozoic - or available maps of surface heat-flow, and the origin of the deep anomalies remains enigmatic.
Resumo:
This paper discusses the correlation of thermal conductivity, density and magnetic susceptibility with composition of major and trace elements of Neoproterozoic igneous bodies from Borborema Province, Northeastern Brazil. These properties were used as potential markers among the studied magmatic suites. For the correlation between petrophysical and geochemical properties it was considered a set of 195 chemical analyzes of granitoid rocks, separated by the degree of acidity in basic, intermediate and acidic. Major (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O and TiO2) and some trace elements (Rb, Sr, Ba, Zr, Th and U) that are usually linked to the formation of the most common minerals of igneous rocks were used. The results show that SiO2 has the best positive correlation with the thermal conductivity, while Al2O3, CaO, Fe2O3, MgO and TiO2 exhibit negative correlation for the same property. The correlation with density is opposite to that one for these oxides with the thermal conductivity. The magnetic susceptibility did not correlate with the elements studied. The results for thermal conductivity and density indicate a tendency of SiO2 and oxides with higher affinity with mafic minerals (Al2O3, CaO, Fe2O3, TiO2 and MgO) in controlling these petrophysical parameters. The set of samples was divided into five different magmatic suites based on their lithogeochemical aspects into: i) peralkaline / alkaline; ii) alkaline; iii) calc-alkaline; iv) high potassium calcium alkaline; and v) shoshonitic. Data analysis showed that the thermal conductivity and density presented good results in the individualization of these suites, notably between peralkaline / alkaline, alkaline suites, calc-alkaline and shoshonitic. However, the high-K calc-alkaline suite overlapped with the other. In contrast, the magnetic susceptibility did not show effective results for separating the five chemical suites.
Resumo:
The crustal architecture of the Borborema Province was investigated through migration and stacking of receiver functions (phase-weighted-stack). The stacks were developed from teleseismic
Resumo:
A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% < < 65%) as compared with the igneous and ortho-derived rocks (51% < < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% < < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% < < 42%), MW ( = 40%), and GM (35% < < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.
Resumo:
The Borborema Province, located in northeastern Brazil, has a basement of Precambrian age and a tectonic framework structured at the Neoproterozoic (740-560 Ma). After separation between South America and Africa during the Mesozoic, a rift system was formed, giving rise to a number of marginal and inland basins in the Province. After continental breakup, episodes of volcanism and uplift characterized the evolution of the Province. Plateau uplift was initially related to magmatic underplating of mafic material at the base of the crust, perhaps related to the generation of young continental plugs (45-7 Ma) along the Macau-Queimadas Alignment (MQA), due to a small-scale convection at the continental edge. The goal of this study is to investigate the causes of intra-plate uplift and its relationship to MQA volcanism, by using broadband seismology and integrating our results with independent geophysical and geological studies in the Borborema Province. The investigation of the deep structure of the Province with broadband seismic data includes receiver functions and surface-wave dispersion tomography. Both the receiver functions and surface-wave dispersion tomography are methods that use teleseismic events and allow to develop estimates of crustal parameters such as crustal thickness, Vp/Vs ratio, and S-velocity structure. The seismograms used for the receiver function work were obtained from 52 stations in Northeast Brazil: 16 broadband stations from the RSISNE network (Rede Sismográfica do Nordeste do Brasil), and 21 short-period and 6 broadband stations from the INCT-ET network (Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos). These results add signifi- cantly to previous datasets collected at individual stations in the Province, which include station RCBR (GSN - Global Seismic Network), stations CAUB and AGBL (Brazilian Lithosphere Seismic Project IAG/USP), and 6 other broadband stations that were part of the Projeto Milênio - Estudos geofísicos e tectônicos na Província Borborema/CNPq. For the surface-wave vii tomography, seismograms recorde at 22 broadband stations were utilized: 16 broadband stations from the RSISNE network and 6 broadband stations from the Milênio project. The new constraints developed in this work include: (i) estimates of crustal thickness and bulk Vp/Vs ratio for each station using receiver functions; (ii) new measurements of surfassewave group velocity, which were integrated to existing measurementes from a continental-scale tomography for South America, and (iii) S-wave velocity models (1D) at various locations in the Borborema Province, developed through the simultaneous inversion of receiver functions and surface-wave dispersion velocities. The results display S-wave velocity structure down to the base of the crust that are consistent with the presence of a 5-7.5 km thick mafic layer. The mafic layer was observed only in the southern portion of the Plateau and absent in its northern portion. Another important observation is that our models divide the plateau into a region of thin crust (northern Plateau) and a region of thick crust (southern Plateau), confirming results from independent refraction surveys and receiver function analyses. Existing models of plateau uplift, nonetheless, cannot explain all the new observations. It is proposed that during the Brazilian orogeny a layer of preexisting mafic material was delaminated, as a whole or in part, from the original Brasiliano crust. Partial delamination would have happened in the southern portion of the plateau, where independent studies found evidence of a more resistant rheology. During Mesozoic rifting, thinning of the crust around the southern Plateau would have formed the marginal basins and the Sertaneja depression, which would have included the northern part of the Plateau. In the Cenozoic, uplift of the northern Plateau would have occurred, resulting in a northern Plateau without mafic material at the base of the crust and a southern Plateau with partially delaminated mafic layer.
Resumo:
The Dissertation aimed to advance the geological knowledge of the Barcelona Granitic Pluton (BGP). This body is located in the eastern portion of the Rio Grande do Norte Domain (RND), within the São José do Campestre subdomain (SJC), NE of the Borborema Province. The main goal was to understand the geological evolution of the rocks of the pluton and the tectonic setting of magma generation and its emplacement. The BGP has an assumed Ediacaran age and outcropping area of approximately 260 km2, being composed of three varied petrographic/textural facies: (a) porphyritic biotite monzogranite; (b) dykes and sheets of biotite microgranite; (c) dioritic to quartz-dioritic enclaves. The rocks of the BGP have the following structures: (i) a NE-SW and NW-SE directed magmatic fabric (Sγ), accompanied by a magmatic lineation (Lγ) with gentle dip to NE-SW and NW-SE. In the southern portion, there is the concentric pattern of this foliation with medium to high dip, and (ii) a solid state foliation, in part mylonitic (S3+), mainly on the eastern edge with slightly plunging to west. The integration of structural and gravity data permitted to interpret the emplacement of the BGP as controlled by the transcurrent shear zones systems Lajes Pintadas (LPSZ) and Sítio Novo (SNSZ), both of dextral strike-slip kinematics. Mineral chemistry data show that the amphibole form the porphyritic biotite monzogranite facies is hastingsite with moderate Mg / (Mg + Fe) ratios, indicating crystallization under moderate to high ƒO2 and cristallization pressure of around 5.0-6.0 kbar. The biotite tends to be slightly richer in annite molecule and plots in the transitional field from primary biotite to reequilibrated biotite. In discriminant diagrams of magmatic series, the biotite behave like those of subalkaline affinity, consistent with the potassium calc-alkaline / sub-alkaline geochemical affinity of the hosting rock. The opaque minerals are primarily magnetite, with some crystals martitized to hematite indicating relatively oxidizing conditions during magma evolution that originated the BGP. Zoning in plagioclase, K-feldspar and allanite crystals suggest fractional crystallization process. Lithogeochemical data suggest that the facies described for the BGP have similar magma source, usually plotting in the fields and trends of the subalkaline / high potassium calc-alkaline series.