17 resultados para Protección vegetal
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards
Resumo:
In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.
Resumo:
The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
To clarify the functional mechanisms of habitat use is necessary to analyze it in conjunction with the conduct performed by animals. The occurrence, distribution and use of space are characteristic of a species resulting from habitat selection that is in search of conditions favorable to its survival. One can relate the physical and biological factors of the environment with the ecological characteristics of the species, since these factors act by regulating the ecological success of organisms, and from there you can get important information about the habitat use and behavior of individuals. This study aimed to characterize the use of habitat and diurnal activity expressed by the Guiana dolphin, Sotalia guianensis in an estuarine area of Sergipe state, Brazil, analyzing the influence of tide and time days on the occurrence of animals and behavior s state, and group s size and composition in this cetacean species. From March 2009 to February 2010, focal groups observations of dolphins were made from fixed - point and records snapshots of data taken every 5 min. in the interval from 6 a.m to 6 p.m, in alternating shifts. The results showed that the constant presence of animals in the area of the Sergipe River estuary indicates that this is an important area of occurrence of S. guianensis, which use the region mainly in the morning, at low tide and as a feeding. As in other regions of northeastern Brazil, small groups formed 2-12 individuals were most common, with adults and immatures. The high frequency of immature animals may indicate that this area of the estuary is used as brood area and parental care of pups and young animals, since the immature animals were very associated with adults and monitoring the activities of foraging / feeding may be related to a form of learning or training of such behavior
Resumo:
This work focuses the familiar cajuculture at Serra of Mel (RN) that presents a geographic and climatic structure favourable to the development of the cajuculture; the interaction between the ambient factors and agriculture in the region provides a propitious environment to the culture of the cashew; the objective of present work was associate ambient, economic, social and cultural factors of this municipy with the possibility of a sustainable agriculture associated with the vegetal biotechnology
Resumo:
The mangrove is a coastal ecosystem of the big ecological importance, showing high fragility front by natural process and the human interventions in the coastal zone. This research has objective to analyses the relation between mangrove species distribution and geochemical parameters variation of the water and soil in Apodi/Mossoro estuary, located in the Rio Grande do Norte state north coastline. The results were obtained from floristic and structural analysis of the vegetation and Quick Bird satellite images interpretation (collected in 2006 year), manipulated with ENVI 4.3 and ArcGIS 9.2 software s. This estuary was characterized by to presents a gradient of the salinity around 40 kilometers extension, finding amount between 50 and 90 g/l-1. Will be identified the formation of the mix vegetation formation in the estuary mount, where the water salinity no show express wide variation on seawater (36 g/l-1), finding species: Rhizophora mangle L., Laguncularia racemosa (L.) C. F. Gaertn, Avicennia schaueriana Stap. & Leechman e Avicennia germinans L. Along of the estuary, have a streak formation of the vegetation composed by Avicennia spp. and L. racemosa. In high estuary, where the salinities value stay above 60 g/l-1, only A. germinans predominate in dwarf form. In this sense, the salinity is as a limiting factor of stress on the mangrove vegetation as it enters the estuary, this parameter should be taken into account when drawing up management plans and environmental restoration in the estuary in question
Resumo:
This paper aims to describe the familiar cotton culture in the districts of Tangará and Triunfo Potiguar, located in the state of Rio Grande do Norte. It relates specific problems that small cotton agriculturists face in the cotton production and sale as well as their perception in relation to public policies that have been put into practice in these districts. The research revealed soils with potentiality for the cotton culture, but that are not being cultivated for anything else but subsistence, not being able to become productive, specifically through the cotton culture. That activity should be practiced so that it preserves the environment and the familiar farmers themselves, since it was verified they are constant1y exposed to health problems due to insecticides use. In what refers to fomentation policies it was observed that bureaucracy delays the liberation of the money destined to production, seeds delivery and other actions related to production and commercialization. Some procedures such as information and training about productivity development and attention with the environrnent and infrastructure are recommended. The results indicate lack of investments, rural credit and technical help, main1y in Triunfo Potiguar. There is unanimity, from the rural farmers of that district in what refers to the desire of improving the production and remaining in that activity. In this sense, the contribution of this research for the most appropriate culture production can be materialized through the technique of tissue's culture, aimed at obtaining plants that are resistant to diseases. The data indicated that the hormonal supplementations used induced regenerative calluses making in vitro morphogenesis possible in alI tested varieties. The use of the activated coal antioxidant was efficient, reducing oxidation, however not suppressing it. The results lead to an opportunity for the familiar tàrmers from Rio Grande do Norte enlarge the cotton culture, because to obtain plants that are resistant to diseases implies in insecticides reduction, propitiating smaller impact to the atmosphere and less cost
Resumo:
The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.
Resumo:
Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.
Resumo:
Este trabalho visa analisar o potencial do sombreamento vegetal no edifício para promover conforto térmico, luminoso e eficiência energética, a partir de simulações computacionais nos softwares DesignBuilder e Daysim. Foram simuladas diferentes combinações de fator de céu visível (FCV), transparência da copa vegetal e percentual de abertura da fachada (PAF) para edificação residencial térrea em Nata/RN, a fim de quantificar os impactos e propor recomendações projetuais. Os modelos foram analisados por meio do método de conforto adaptativo indicado pela ASHRAE Standard 55 (ASHRAE, 2010), classificação do nível de eficiência energética do Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Residenciais (RTQ-R), resultados de Daylight autonomy (DA) e uniformidade da luz natural para as exigências lumínicas de 100-300-500 lux. Os resultados demonstram grande potencial para integração da vegetação na edificação, principalmente para os fatores de céu médio e grande, e falta de coerência do RTQ-R para classificar as edificações da Zona bioclimática 08 pelo método de simulação.
Resumo:
The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.
Resumo:
The feasibility of using the corn cob to obtain a polymer matrix composite was studied. To obtain the bran, corncob passed the drying process in a solar dryer, and was subsequently triturated in forage and to obtain the different particle sizes, by sieving. Three different grain sizes were used: fine particles (FP) size between 0,10 and 2mm; sized particles (PM) with sizes between 2,10 and 3,35 mm; large particles (PG) sizes between 3,45 and 4,10 mm. Using 20% of residue relative to the resin, the test samples were constructed for characterization of the composite, taking into account thermal and mechanical parameters. The main advantage of the proposed composite is that it has a low density, below the relative resin, about 1.06 kg / m³ for the PG. The composite showed a mechanical behavior less than of the resin to the grain sizes and for all formulations studied. Showed better results for the bending, reaching 25.3 MPa for the PG. The composite also showed be feasible for thermal applications, with thermal conductivity less than 0.21 W / m, ranking as insulation. In terms of homogeneity of the mixture, the most viable grain size is the PF, which also showed improved aesthetics and better processability. This composite can be used to make structures that do not require significant mechanical strength, such as tables, chairs, planks, and solar and wind prototypes, such as ovens and cookers and turbines blades.