15 resultados para Programmable logic

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a packet manipulation tool developed to realize tests in industrial devices that implements TCP/IP-based communication protocols. The tool was developed in Python programming language, as a Scapy extension. This tool, named IndPM- Industrial Packet Manipulator, can realize vulnerability tests in devices of industrial networks, industrial protocol compliance tests, receive server replies and utilize the Python interpreter to build tests. The Modbus/TCP protocol was implemented as proof-of-concept. The DNP3 over TCP protocol was also implemented but tests could not be realized because of the lack of resources. The IndPM results with Modbus/TCP protocol show some implementation faults in a Programmable Logic Controller communication module frequently utilized in automation companies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technological evolution of industrial automation systems has been guided by the dillema between flexibilization and confiability on the integration between devices and control supervisory systems. However, there are few supervisory systems whose attributions can also comprehend the teaching of the communication process that happens behind this technological integration, where those which are available are little flexible about accessibility and reach of patterns. On this context, we present the first module of a didactic supervisory system, accessible through Web, applied on the teaching of the main fieldbus protocols. The application owns a module that automatically discovers the network topology being used and allows students and professionals of automation to obtain a more practical knowledgment by exchanging messages with a PLC, allowing those who are involved to know with more details the communication process of an automation supervisory system. By the fact of being available through Web, the system will allow a remote access to the PLC, comprehending a larger number of users. This first module is focused on the Modbus protocol (TCP and RTU/ASCII)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PLCs (acronym for Programmable Logic Controllers) perform control operations, receiving information from the environment, processing it and modifying this same environment according to the results produced. They are commonly used in industry in several applications, from mass transport to petroleum industry. As the complexity of these applications increase, and as various are safety critical, a necessity for ensuring that they are reliable arouses. Testing and simulation are the de-facto methods used in the industry to do so, but they can leave flaws undiscovered. Formal methods can provide more confidence in an application s safety, once they permit their mathematical verification. We make use of the B Method, which has been successfully applied in the formal verification of industrial systems, is supported by several tools and can handle decomposition, refinement, and verification of correctness according to the specification. The method we developed and present in this work automatically generates B models from PLC programs and verify them in terms of safety constraints, manually derived from the system requirements. The scope of our method is the PLC programming languages presented in the IEC 61131-3 standard, although we are also able to verify programs not fully compliant with the standard. Our approach aims to ease the integration of formal methods in the industry through the abbreviation of the effort to perform formal verification in PLCs

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation aims to develop a software applied to a communication system for a wireless sensor network (WSN) for tracking analog and digital variables and control valve of the gas flow in artificial oil s elevation units, Plunger Lift type. The reason for this implementation is due to the fact that, in the studied plant configuration, the sensors communicate with the PLC (Programmable and Logic Controller) by the cables and pipelines, making any changes in that system, such as changing the layout of it, as well as inconveniences that arise from the nature of the site, such as the vicinity s animals presence that tend to destroy the cables for interconnection of sensors to the PLC. For software development, was used communication polling method via SMAC protocol (Simple Medium Access ControlIEEE 802.15.4 standard) in the CodeWarrior environment to which generated a firmware, loaded into the WSN s transceivers, present in the kit MC13193-EVK, (all items described above are owners of Freescale Semiconductors Inc.). The network monitoring and parameterization used in its application, was developed in LabVIEW software from National Instruments. The results were obtained through the observation of the network s behavior of sensors proposal, focusing on aspects such as: indoor and outdoor quantity of packages received and lost, general aspects of reliability in data transmission, coexistence with other types of wireless networks and power consumption under different operating conditions. The results were considered satisfactory, which showed the software efficiency in this communication system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados