31 resultados para Produção e composição de fezes
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The objective of this research was to evaluate the production of dairy goats fed different species of cactus. Pluriparous five Saanen goats were used, with nine weeks of lactation, and average live weight of 50 kg ± 4 kg. The animals were distributed in latin square design (5x5) with 5 diets and 5 periods. No differences (P>0,05) were observed in the DM of the experimental diets by getting average values of 2.251,84 g dia-1 , 4,46 %PV e 118,91g kg0,75 . The DM contents of the diets were 50,55 to 55,92% by presenting a maximum variation of 10% between them. A significant difference (P<0,05) water consumption way tendered, between diets with different cactus species. The treatments cactus “Orelha de Elefante Mexicana” and Facheiro had lower water consumption compared to cactus “Palma Miúda. For milk yield no significant difference (P> 0,05) between diets formulated with cactus species, with an average of 1,90 kg/day treatments. The analysis of variance show a significant difference (P<0,05) among treatments for milk corrected to 4% fat and fat production. There was an effect (P<0,05) of the diets with different cactus on the crude protein (CP) and lactose in milk. All treatments with different cactus species can be used for dairy goats in view consumption have afforded sufficient to meet the nutritional requirements for milk nutrients, besides presenting the higher than levels of physical and chemical composition to minimum levels established by current legislation
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
The use of binders in the soil for the production of solid bricks is an old construction technique that has been used by several civilizations over time. At the same time, the need for environmental preservation and the tendency of scarcity of natural resources make the construction invest in researching new concepts, methods and materials for building systems for the sustainability of their economic activities. Thus arises the need to obtain building materials with low power consumption, capable of reducing the growing housing shortage of rural and urban population. Currently, research has been conducted on this topic to better understand the cementitious and pozzolanic reactions that occur in the formation of the microstructure of the soil-cement when added to other materials such as, for example, lime, and the relationship between microstructure and formed interfaces with the physical, mechanical and chemical analysis in compounds made from these ternary compositions. In this context, this study aimed to analyze the results of the influence of the incorporation of lime to the soil-cement to form a ternary mixture to produce soil-cement bricks and mortar without structural purposes. From the inclusion of contents of 6 %, 8 %, 10% and 12% lime to the soil, and soil-cement mixes in amounts of 2 %, 3 %, 4 % and 5 % were shaped-bodies of -cylindrical specimens to determine the optimum moisture content and maximum dry apparent specific weight. Then they were cured, and subjected to the tests of compressive strength, absorption and durability modified. Compositions obtained the best results in the tests performed on the bodies-of-proof cylindrical served as a parameter for molding of solid bricks, which underwent the same experimental methodology previously cited. The raw materials used, as well as compositions in which the bricks were molded solid, were characterized by physical and chemical tests, X-ray diffraction and scanning electron microscopy. The results obtained in the study indicate that the compositions studied, that showed the best results in terms of compressive strength, water absorption and durability ternary composition was soil, 10 % cement and 2 % lime
Resumo:
Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation
Resumo:
This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.
Resumo:
The main aim of this study was to compare the procedure for dehydration of Gracilaria birdiae prepared handmade and laboratory, collected in the northern coast of Rio Grande do Norte. The sample was collected in the Rio do Fogo beach in march 2009. The sample collected followed by two processing, the first the material prepared in laboratory was air-dried at 50°C for 24 hours in air-flow oven. The second the handmade sample was air-dried on the sun during three days. The extract was prepared in three different solvents: ethanol, hydroethanol and water, resulting in ethanol, hidroethanol and aqueous extracts from handmade and laboratory sample. In according with results only the ethanol extract was fractionated yielding the fractions hexane, dichloromethane and ethyl acetate fractions. The different process to obtain Gracilaria birdiae resulted in the samples with different shades. The soluble solids content was higher in the laboratory sample. The chemical composition the both samples were characterized by presenting a considerable amounts of carbohydrates, with amior percentage protein and ash, respectively, in the handmade and laboratory sample. In two samples showed a low content of lipids and the lipid profile showed a higher proportion of monounsaturated fatty acids, with the absence polyunsaturated handmade sample. The phytochemical screening by chemical reactions showed the presence of flavonoids, tannins, alkaloids and saponins the laboratory sample, presenting a greater diversity of bioactive compounds. Through of the analysis by thin layer chromatography was possible to identify the phytosterols β-sitosterol and stigmasterol the both samples, also suggest the presence of β-carotene and chlorophyll α the laboratory sample. The levels of total phenolics and flavonoids were more significant in the ethanol extract of the laboratory sample. The in vitro lethality showed that extracts of the laboratory sample and handmade from 125 to 500 μg/ mL, respectively, were highly lethal. In the evaluation of antioxidant capacity by the system β-carotene/ácido linoleic method and by DPPH radical scavernging assay, the ethanol extract from the laboratory process showed significantly greater activity than the other extracts, being and the first and second methods, respectively, lower and equivalent to the synthetic antioxidant BHT. The handmade ethanol extract has not demonstrated skill in deactivating free radicals, but showed activity in inhibiting lipid peroxidation, although the values were significantly lower than the laboratory sample. We conclude that the dehydration process in the laboratory is the most efficient technique to maintenance of the chemical composition present in the seaweed, providing beneficial properties such as antioxidant capacity. We emphasize that this property can be explored with the objective of adding commercial value to the final product, which will promote the expansion of production of this seaweed in the community of Rio do Fogo
Resumo:
Many have sought to understand the spatial processes, which originate from land development and real estate dynamics, seeking also to build new categories of analysis to put some light on the less evident aspects of this process. The discussion about production of space has been adopted in this study, but has proved insufficient to explain this complex urban reality. Here, it is analysed the ways that, in Natal, the market fosters the material basis for capital accumulation. The research had as methodological basis, the analysis of discourse, having full interviews with institutional agents as background. It aimed at understanding the complex, material configuration in urban space. It thus investigates the theory of practices of existing (private and public) agents towards the real estate market, using several concepts, like production of space (Lefèbvre and Harvey); habitus (Bourdieu); spatial fix (Harvey); and territoriality (Haesbaert). Evidence shows that there has been a process of ‗naturalization of certain practices in the market that has had implications for the production of an urban space that is both segmented and segregated, giving rise also to complex material configurations, including different forms of heterotopies (Foucault). These spaces result from capital s own creative dynamics and of the reach for social realization for different groups of people making a living under different economic conditions of income.
Resumo:
The plot myth-techno-logic, contemporary, was developed starting from the dualism myth-reason. In this study, we deepened the alluded dualism taking as reference the historical contexts of the Renaissance and of the Enlightenment, emphasizing the discussion of the economical rationalization as conductive thread of the western development, in which we identified the game of the rational and of the irrational, for assure the superiority of the reason. In the context of that game, we analyzed the implications of the modernization, for the education, in function of the instrumental rationality, responsible for the environment of adaptation of the technological instruments to the scenery of the contemporary modernization. The new context is constituted by points of union and of ruptures among the technique, the science and the myth. Through our analysis, we noticed that the basic needs for the contemporary society were linked to the changes in the production means, for which the machine determine the rhythm of the work and the quality of the product. However, the changes in the productive processes promoted the appearance of the commercial marks that, as we see it, they represented the synthesis of the perfect harmony of the myth, of the technique, of the science and of the technology, in the conduction of the economical rationalization to the contemporary modernization. Thus, the contemporary modernization it arrives us for the economical rationalization, developed with the support of the technician-scientific knowledge and communicated by the articulations of the myth-techno-logical
Resumo:
With the trajectory that the problems related to child health are taking in our society, particularly with regard to infant mortality, beyond the process of decentralization of health and the implementation of the Family Health Strategy in the cities, where it has increased considerably performance of nursing staff in Primary Health Care, they can be considered essential factors for reflections on the care of nurse dispenses the health of these children. In order to check how it is organized the working process of the nurse in caring for these children in USFs as well as the difficulties found in the dynamics of this work, this research aimed to analyze the work processes of nurses in care Child Health in USFs, with emphasis on technologies used in producing care. This is a research exploratory and descriptive with qualitative approach, based on the theoretical reference in about Work Process and Composition Technique of Work. The data were collected through semi-structured interviews of 11 nurses who, at the moment, perform their functions for more than 01 year at USF. The guiding questions were based at theoretical reference. To analyze the results, was used the referential of content analysis, and was refer to thematic analysis. In situations that were involved closed questions of the interview, was used the aid of SPSS 15.0 program for Windows. The results indicated that the process of nurse work in health care of children, focuses on the preventive character, whose focus of the actions are healthy children, following the routines and protocols established by the Ministry of Health with a view to maintaining health them. When analyzing the data through theoretical references of Composition Technique of Work found that the core technologies of daily tasks of the nurse are directed for the use of technology soft-hard and hard, and the reason established between the Dead Working and Alive Working, there is prevalence of the first against the second in the production of this care. These situations contribute to the explanation of the emergence problems related to adhesion of mothers / caregivers to monitoring the CD, due to character prescriptive and normalizer of actions. The results also suggested the presence of "vanishing lines" in the make of nurses, confirming the self-governance of health professionals in daily work. These "vanishing lines" express the own execution of the Work Live in action, guided by the use of soft technologies, however, was not characterized as a process of technology transition. So, to get a better resolution to the problems related to child health, the nurse has reorganize your work process by focusing on the execution of work live in action.
Resumo:
From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete
Resumo:
It s more and more evident the subject of the shortage of water, worsened by the accelerated urbanization, growth of the population, increase of the demand and of the costs of its treatment, factors that are also tied up to the increase of the consumption of mineral waters, whose chemical composition or physical-chemistries characteristics do with that are considered beneficial to the health. The growth accelerated all over the world in its consumption aims the concern with the waters quality, the health and the incentive to the consumption of natural products. However, in spite of quite valuable, that resource is explored, most of the time, without optimization of production or actions that avoid wastefulness. This research is justified for the need of minimizing the negative environmental impacts caused by the mineral water s production, mainly in what it say about the generation of effluents and wastes in the productive process, through the study, development and application of cleaner production tools for the environmental management, pertinent for that section. The applicability of Environmental Management System was determined by means of the characterization of the environmental aspects of productive process in a company of the section, in the state of Rio Grande do Norte and of the discussion of the panoramas that demonstrate the tendency for a sustainable development. Actions as a reforestation, optimization of energy and water uses, recycle of solid residues and water reuse were applied during the research, resulting in the considerable reduction of wastes of raw materials and inputs and consequent environmental and economic won. A specific methodology was proposed with concepts of Environmental Management, integrating with Quality Management. As foundations for the elaboration of the methodology, it was realized a similarity analysis among the systems and, mainly, an analysis of the experiences observed in the case study, including specificities, needs and difficulties of the company. With these results, the implantation of a EMS as a company strategy has environmental, economic and social benefits, and this research can be applied and adequate to others companies and sectors
Resumo:
The production of the red pottery brick, made traditionally with clay, is a technique that is already stabled. However, in spite of the little complexity that involves the conventional process of these bricks production, it are exposed to many problems that begin in the fase of exploration of the mines, the problems get worse because of the lack of the clay's characterization, and they continue through the steps of the dough preparation, conformation of the products, the drying and the burning process. The wastefulness is shown and so is the low quality of the material produced. Among other factors, the high use of energy in the burning makes the cost of this material inaccessible to the low income consumer. Besides this, the destruction of the environment around the mines and the use of native vegetation to produce wood - the most used fuel in the pottery industry - make serious environmental damage. The production technique of a new type of simple brick (adobe), that has low cost and no environmental damage, can be the viable altemative to lower the cost of this part of the civil construction, and, consequently, in the building of cheaper houses. In this paper, the results of the mechanical resistance of the adobe brick are shown, using in its composition, clay, natural vegetable fibers, cement and plaster in a process that is completely handcrafted and manual. It is intented to make clear that are possible alternatives to be put in practice, with the simple process, using "raw earth" that has been used in the construction of houses in thousands of years, trying to solve these severe problems. Analysis and tests were performed to find results that could prove the possibility of the utilization of this kind of material. Other studies are in progress, and the new researches are necessary to enrich this work, but it stays the certainty that there is potential to produce bricks from adobe, as an alternative that has low cost to civil construction
Resumo:
Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials
Resumo:
The production of biodiesel has become an important and attractive process for the production of alternative fuels. This work presents a study of the biodiesel production from coconut oil (Cocos nucifera L.), by two routes: direct transesterification using NaOH as catalyst and esterification (with H2SO4) followed by basic transesterification. The reactor was built in pirex with 1L of capacity and was equipped with a jacket coupled with a thermostatic bath to temperature control, a mecanical stirring is also present in the reactor. The analysis of oil composition was carried out by gas chromatography and esters compounds were identified. The parameters of molar ratio oil/alcohol, reaction time and temperature were studied and their influence on the conversion products was evaluated using experimental planning (23). The molar ratio was the most significant variable by the statistical planning analysis. Conversions up to 85.3% where achived in the esterification/transesterification, with molar ratio 1:6 at 60ºC and 90 minutes of reaction. For the direct transesterification, route conversions up 87.4% eas obtained using 1:6.5 molar ratio at 80ºC and 60 minutes of reaction. The Coconut oil was characterized by their physic chemical properties and key constituents of the oil. The lauric acid was the main constituint and the oil showed high acidity. The biodiesel produced was characterized by its main physicochemical properties, indicating satisfactory results when compared to standard values of National Petroleum Agency. The work was supplemented with a preliminary assessment of the reaction kinetic
Resumo:
Global warming due to Greenhouse Gases (GHG) emissions, especially CO2, has been identified as one of the major problems of the twenty-first century, considering the consequences that could represent to planet. Currently, biological processes have been mentioned as a possible solution, especially CO2 biofixation due to association microalgae growth. This strategy has been emphasized as in addition to CO2 mitigation, occurs the production of biomass rich in compounds of high added value. The Microalgae show high photosynthetic capacity and growth rate higher than the superior plants, doubling its biomass in one day. Its culture does not show seasons, they grow in salt water and do not require irrigation, herbicides or pesticides. The lipid content of these microorganisms, depending on the species, may range from 10 to 70% of its dry weight, reaching 90% under certain culture conditions. Studies indicate that the most effective method to promote increased production of lipids in microalgae is to induce stress by limiting nitrogen content in the culture medium. These evidences justify research continuing the production of biofuels from microalgae. In this paper, it was studied the strategy of increasing the production of lipids in microalgae I. galbana with programmed nutritional stress, due to nitrogen limitation. The physiological responses of microalgae, grown in f / 2 with different concentrations of nitrogen (N: P 15,0-control, N: 5,0 P and N: P 2,5) were monitored. During exponential phase, results showed invariability in the studied conditions. However the cultures subjected to stress in stationary phase, showed lower biomass yields. There was an increase of 32,5% in carbohydrate content and 87.68% in lipids content at N: P ratio of 5,0 and an average decrease of 65% in protein content at N: P ratios of 5, 0 and 2.5. There were no significant variations in ash content, independently of cultivation and growth phase. Despite the limitation of biomass production in cultures with N: P smaller ratios, the increase of lipid accumulation highest lipids yields were observed as compared to the control culture. Given the increased concentration of lipids associated to stress, this study suggests the use of microalgae Isochrysis galbana as an alternative raw material for biofuel production