4 resultados para Probabilistic robotics
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, we propose a probabilistic mapping method with the mapped environment represented through a modified occupancy grid. The main idea of the proposed method is to allow a mobile robot to construct in a systematic and incremental way the geometry of the underlying space, obtaining at the end a complete environment map. As a consequence, the robot can move in the environment in a safe way, based on a confidence value of data obtained from its perceptive system. The map is represented in a coherent way, according to its sensory data, being these noisy or not, that comes from exterior and proprioceptive sensors of the robot. Characteristic noise incorporated in the data from these sensors are treated by probabilistic modeling in such a way that their effects can be visible in the final result of the mapping process. The results of performed experiments indicate the viability of the methodology and its applicability in the area of autonomous mobile robotics, thus being an contribution to the field
Resumo:
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Resumo:
Until recently the use of biometrics was restricted to high-security environments and criminal identification applications, for economic and technological reasons. However, in recent years, biometric authentication has become part of daily lives of people. The large scale use of biometrics has shown that users within the system may have different degrees of accuracy. Some people may have trouble authenticating, while others may be particularly vulnerable to imitation. Recent studies have investigated and identified these types of users, giving them the names of animals: Sheep, Goats, Lambs, Wolves, Doves, Chameleons, Worms and Phantoms. The aim of this study is to evaluate the existence of these users types in a database of fingerprints and propose a new way of investigating them, based on the performance of verification between subjects samples. Once introduced some basic concepts in biometrics and fingerprint, we present the biometric menagerie and how to evaluate them.
Resumo:
Until recently the use of biometrics was restricted to high-security environments and criminal identification applications, for economic and technological reasons. However, in recent years, biometric authentication has become part of daily lives of people. The large scale use of biometrics has shown that users within the system may have different degrees of accuracy. Some people may have trouble authenticating, while others may be particularly vulnerable to imitation. Recent studies have investigated and identified these types of users, giving them the names of animals: Sheep, Goats, Lambs, Wolves, Doves, Chameleons, Worms and Phantoms. The aim of this study is to evaluate the existence of these users types in a database of fingerprints and propose a new way of investigating them, based on the performance of verification between subjects samples. Once introduced some basic concepts in biometrics and fingerprint, we present the biometric menagerie and how to evaluate them.