5 resultados para Prey preference

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protozoa may be an important alternative food source for Calanoida copepods in these environments. Aiming to quantify the feeding preferences of N. cearensis by ciliates in the presence of cyanobacteria, in vitro experiments were conducted, using mixed cultures in different concentrations of total food for copepod. Two ciliates species (Paramecium sp. and Cyclidium sp.) and a cyanobacteria toxic strain (Microcystis aeruginosa) were offered as food. Previous experiments were done to identify the copepod s maximum ingestion rate through the use of a type II functional response model when each prey is offered separately. High maximum ingestion rate were found when those protists were offered as prey. N. cearensis showed significant preference for protozoal prey over the cyanobacterium tested both in low (corresponding 95.15% of the diet) and in high food concentration treatments (about 91.56% of the diet), preferring the bigger ciliate in lower concentrations (67.52% of the diet). The meaningful involvement of heterotrophic organisms in the zooplankton diet emphasis the microbial loop participation in the energy transition from copepods to higher trophic levels. This data contributes to understand the stability of existing trophic interactions in reservoirs subjected to eutrophication and assists trophic cascade studies in these environments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lemon sharks, Negaprion brevirostris, are common in the Fernando de Noronha Archipelago, but detailed information about the species in this site is lacking. The aim of this study was to describe the spatial distribution, grouping behavior, habitat use and behavioral ecology of juvenile lemon sharks in the archipelago, and their interaction with some environmental and ecological factors. During 2006 and 2007, the presence and spatial distribution of juvenile sharks were quantified through scuba diving and snorkeling at several sites of the archipelago. In 2008 the habitat use of juvenile sharks was quantified through visual census while snorkeling along 300 x 8 m strip transects. During these transects the grouping behavior of lemon sharks was quantified by ad libitum. Results indicate that Fernando de Noronha Archipelago is used as a nursery area for lemon sharks, and the parturition occurs from November to April. Juveniles preferred using shallower areas available by the tide variation and formed groups only in the presence of adult conspecifics. This preference for shallower habitats and the group behavior probably are anti-predatory tactics used by juvenile lemon sharks, in response to the low availability of shelter and high predation risk of the studied areas. Quantifications of prey availability and predation risk of juveniles showed that, in general, lemon sharks are trading-off food by security and investing in sites with higher possibility of energetic return. Behavioral observations enabled to record juvenile carangid fishes following juvenile lemon sharks, remora host-parasite and juvenile sharks foraging on schools of herrings and octopuses. We also recorded the behavior of juvenile sharks following conspecifics of similar size, circling with two or three individuals and smaller individuals giving way to larger juveniles. When adults are present, juvenile lemon sharks are more social than solitary, indicating that predation is one of the factors that contribute to social behaviors of the species. Results also suggest that when grouped the juveniles have a hierarchical organization according to body size. Furthermore, observation of large adult females with several fresh mating bites and scars in the same habitats used by juvenile lemon sharks, indicates that Fernando de Noronha Archipelago is used as nursery and mating grounds by this species

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bats correspond to 20% of the extant mammal species and, with a few exceptions, use echolocation, a spacial orientation system based on emission and analysis of echoes from sound waves, generally ultrasounds. Echolocation was discovered in the 1940 s and since the 1970 s ultrasound detectors have been commercially available, allowing the investigation of several aspects of the natural history and ecology of bats. Passive acoustic monitoring has been frequently used in habitat use studies, predominantly in North America and Europe, by comparing the number of bat passes between different habitat types. This dissertation presents the first evaluation of the spacial and seasonal variation patterns in the activity of insectivorous bats in the Brazilian biome Pampa, in the state of Rio Grande do Sul. Since bat activity can vary according to habitat type, time of year and climatic conditions, the following hypotheses were tested: 1. bat activity varies between different types of habitat; 2. bat activity varies seasonally; 3. bat activity is influenced by temperature, humidity and wind speed. The acoustic samples were taken along fixed transects of 1500 meters, which were monitored monthly from April 2009 to March 2010. Five habitat types were sampled: eucalypts, stream, riparian forest, wetland and grassland. In each sample, the number of bat passes was obtained by using an ultrasound detector Pettersson D230. A total of 1183 bat passes were registered. Greater bat activity levels was observed along large eucalypts (1.93 bat passes/3min) and along a stream (1.61 bat passes/3 min). A riparian forest (0.94 bat passes/3 min) and a wetland area (0.61 bat passes/3 min) exhibited statistically equal levels of activity. Bat passes were fewer in grassland areas (0,16 bat passes/3 min). Bat activity was not correlated with abiotic factors. However, bat activity was significantly low in the colder season, winter, and was similar in autumn, spring and summer. The observed preference for vegetation borders and water courses agrees with reports from other countries and is attributed predominantly to the high prey abundance in these types of environments. Additionally, low activity in the winter is probably a response to the reduced availability of insects, and to lower temperatures. Our results indicate which areas of arboreal vegetation and water courses should be priorities for the conservation of bats and that alterations of these habitat types might negatively influence bat activity in the region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.