5 resultados para Previsão de Produção

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The history match procedure in an oil reservoir is of paramount importance in order to obtain a characterization of the reservoir parameters (statics and dynamics) that implicates in a predict production more perfected. Throughout this process one can find reservoir model parameters which are able to reproduce the behaviour of a real reservoir.Thus, this reservoir model may be used to predict production and can aid the oil file management. During the history match procedure the reservoir model parameters are modified and for every new set of reservoir model parameters found, a fluid flow simulation is performed so that it is possible to evaluate weather or not this new set of parameters reproduces the observations in the actual reservoir. The reservoir is said to be matched when the discrepancies between the model predictions and the observations of the real reservoir are below a certain tolerance. The determination of the model parameters via history matching requires the minimisation of an objective function (difference between the observed and simulated productions according to a chosen norm) in a parameter space populated by many local minima. In other words, more than one set of reservoir model parameters fits the observation. With respect to the non-uniqueness of the solution, the inverse problem associated to history match is ill-posed. In order to reduce this ambiguity, it is necessary to incorporate a priori information and constraints in the model reservoir parameters to be determined. In this dissertation, the regularization of the inverse problem associated to the history match was performed via the introduction of a smoothness constraint in the following parameter: permeability and porosity. This constraint has geological bias of asserting that these two properties smoothly vary in space. In this sense, it is necessary to find the right relative weight of this constrain in the objective function that stabilizes the inversion and yet, introduces minimum bias. A sequential search method called COMPLEX was used to find the reservoir model parameters that best reproduce the observations of a semi-synthetic model. This method does not require the usage of derivatives when searching for the minimum of the objective function. Here, it is shown that the judicious introduction of the smoothness constraint in the objective function formulation reduces the associated ambiguity and introduces minimum bias in the estimates of permeability and porosity of the semi-synthetic reservoir model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the energy consumed worldwide comes from oil, coal and natural gas. These sources are limited and estimated to be exhausted in the future, therefore, the search for alternative sources of energy is paramount. Currently, there is considerable interest in making trade sustainable biodiesel, a fuel alternative to fossil fuels, due to its renewable nature and environmental benefits of its use in large scale. This trend has led the Brazilian government to establish a program (Probiodiesel) with the aim of introducing biodiesel into the national energy matrix, by addition of 5% biodiesel to conventional diesel in 2010 to foster not only the increase of renewable energy, but reduce imports of crude oil. This work evaluates different methods of extraction of oil Carthamus tinctorius L., their characterization by IR, 1H and 13C NMR, HPLC and TG and their use in the production of methyl ester (molar ratio of oil / alcohol 1:6, and NaOH catalyst). The physico-chemical parameters (acid value, density, viscosity, saponification index and surface tension) of oil and biodiesel were also described. The produced biodiesel had a yield of 93.65%, was characterized in relation to their physicochemical properties showing satisfactory results (density=875 kg/m3, viscosity = 6.22 mm2/s, AI = 0.01 mg (NaOH) /g) compared with the values established by the the National Agency Oil, Natural Gas and Biofuels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the chemical species produced water from the reservoir areas of oil production in the field of Monte Alegre (onshore production) with a proposal of developing a model applied to the identification of the water produced in different zones or groups of zones.Starting from the concentrations of anions and cátions from water produced as input parameters in Linear Discriminate Analysis, it was possible to estimate and compare the model predictions respecting the particularities of their methods in order to ascertain which one would be most appropriate. The methods Resubstitution, Holdout Method and Lachenbruch were used for adjustment and general evaluation of the built models. Of the estimated models for Wells producing water for a single production area, the most suitable method was the "Holdout Method and had a hit rate of 90%. Discriminant functions (CV1, CV2 and CV3) estimated in this model were used to modeling new functions for samples ofartificial mixtures of produced water (producedin our laboratory) and samples of mixtures actualproduced water (water collected inwellsproducingmore thanonezone).The experiment with these mixtures was carried out according to a schedule experimental mixtures simplex type-centroid also was simulated in which the presence of water from steam injectionin these tanks fora part of amostras. Using graphs of two and three dimensions was possible to estimate the proportion of water in the production area