13 resultados para Power Engineering, Current Control, Hysteresis, Random Pulse Width Modulation (RPWM)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800 pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness
Resumo:
(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
The treatment of wastewaters contaminated with oil is of great practical interest and it is fundamental in environmental issues. A relevant process, which has been studied on continuous treatment of contaminated water with oil, is the equipment denominated MDIF® (a mixer-settler based on phase inversion). An important variable during the operation of MDIF® is the water-solvent interface level in the separation section. The control of this level is essential both to avoid the dragging of the solvent during the water removal and improve the extraction efficiency of the oil by the solvent. The measurement of oil-water interface level (in line) is still a hard task. There are few sensors able to measure oil-water interface level in a reliable way. In the case of lab scale systems, there are no interface sensors with compatible dimensions. The objective of this work was to implement a level control system to the organic solvent/water interface level on the equipment MDIF®. The detection of the interface level is based on the acquisition and treatment of images obtained dynamically through a standard camera (webcam). The control strategy was developed to operate in feedback mode, where the level measure obtained by image detection is compared to the desired level and an action is taken on a control valve according to an implemented PID law. A control and data acquisition program was developed in Fortran to accomplish the following tasks: image acquisition; water-solvent interface identification; to perform decisions and send control signals; and to record data in files. Some experimental runs in open-loop were carried out using the MDIF® and random pulse disturbances were applied on the input variable (water outlet flow). The responses of interface level permitted the process identification by transfer models. From these models, the parameters for a PID controller were tuned by direct synthesis and tests in closed-loop were performed. Preliminary results for the feedback loop demonstrated that the sensor and the control strategy developed in this work were suitable for the control of organic solvent-water interface level
Resumo:
The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800 pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness
Resumo:
(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network
Resumo:
Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control
Resumo:
Introduction: Radical prostatectomy surgery is the best treatment currently adopted by detecting prostate cancer. The urinary incontinence is one more common and difficult to treat postoperative complications, which causes a negative impact on quality of life of the individual prostatectomy . The surface electrical nerve stimulation involves the transmission of electrical impulses from an external stimulator for peripheral nerve through surface electrodes attached to skin. It is an easy and efficient technique, widely used for pain relief, rehabilitation and muscle strengthening. Objective: To analyze the effect of T10-L2 percutaneous electrical stimulation, in individuals with urinary incontinence who underwent radical prostatectomy by the laparoscopic technique. Methods: Six patients had previously undergone radical prostatectomy were submitted to 20 sections of surface electrical stimulation with frequency of 4 Hz, pulse width of 1ms during 20 minutes. All subjects fillid a quality of life - International Consultation on Incontinence Questionnaire- Short FormI - ICIQ-SF questionnaire evaluating. Results: Results showed reduction in the use of the number of pads, number of leaks before and after treatment, and reduced voiding frequency and consequent improvement in quality of life. No side effects were reported. Conclusion: Percutanous electrical stimulation in T10-L2 may be an effective technique to treat urinary incontinence (UI) after radical prostatectomy video laparoscopy
Resumo:
This work deals with the research and development of a Pulse Width Programmable Gain Integrating Amplifier. Two Pulse Width Programmable Gain Amplifier architectures are proposed, one based on discrete components and another based on switched capacitors. From the operating requirements defined for the study, parameters are defined and simulations are carried out to validate the architecture. Subsequently, the circuit and the software are developed and tested. It is performed the evaluation of the circuits regarding the two proposed architectures, and from that, an architecture is selected to be improved, aiming the development of an integrated circuit in a future work.
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells