1 resultado para Polynomial Approximation
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (189)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (41)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (71)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (47)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (20)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (5)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (18)
- Helda - Digital Repository of University of Helsinki (10)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (107)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (43)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (60)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (14)
- Universidade Complutense de Madrid (6)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Montréal (3)
- Université de Montréal, Canada (14)
- University of Michigan (10)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (3)
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot