7 resultados para Plasma sanguíneo - Armazenamento - Teses
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Resumo:
This study aimed to analyze the biological response of titanium surfaces modified by plasma Ar + N2 + H2. Titanium disks grade II received different surface treatments Ar + N2 + H2 plasma, constituting seven groups including only polished samples used as standard. Before and after treatment the samples were evaluated in terms of topography, crystal structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of the sessile drop, respectively. Rich plasma (PRP) was applied to the surfaces modified in culture plates. Images obtained by scanning electron microscopy of the adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. We verified that the adition of H2 on plasma atmosphere resulted in more rough surfaces, with round tops. These surfaces, in contrast to that surfaces treated with high concentration of N2, are less propense to platelet aggregation and, consequently, to the formation of thrombus when applied in biomedical devices.
Resumo:
Currently, computational methods have been increasingly used to aid in the characterization of molecular biological systems, especially when they relevant to human health. Ibuprofen is a nonsteroidal antiinflammatory or broadband use in the clinic. Once in the bloodstream, most of ibuprofen is linked to human serum albumin, the major protein of blood plasma, decreasing its bioavailability and requiring larger doses to produce its antiinflamatory action. This study aimes to characterize, through the interaction energy, how is the binding of ibuprofen to albumin and to establish what are the main amino acids and molecular interactions involved in the process. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant ε = 40 was used. The findings corroborate the literature in which the Sudlow site I (I-FA3) is the primary binding site and the site I-FA6 as secondary site. However, it differs in identifying the most important amino acids, which by interaction energy, in order of decreasing energy, are: Arg410, Lys414, Ser 489, Leu453 and Tyr411 to the I-Site FA3 and Leu481, Ser480, Lys351, Val482 and Arg209 to the site I-FA6. The quantification of interaction energy and description of the most important amino acids opens new avenues for studies aiming at manipulating the structure of ibuprofen, in order to decrease its interaction with albumin, and consequently increase its distribution
Resumo:
Effects of a Cordia salicifolia (porangaba) extract on the labeling of blood cells (BCs) with technetium-99m ((99m)Tc) and on the morphology of red BCs were evaluated. Labeling of cellular and molecular structures with (99m)Tc depends on a reducing agent. Some physical characteristics, as visible absorbance spectrum, electric conductivity, and refractive index of this porangaba extract, were also determined. Blood samples from Wistar rats were incubated with porangaba extract or with 0.9% NaCl (control). Labeling of blood constituents with (99m)Tc was performed. Plasma (P) and BCs, both soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions, were separated. The radioactivity in each fraction was counted, and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, and stained, and the morphology of the red BCs was evaluated. Data showed an absorbance peak at 480 nm and electric conductibility and refractive index concentration-dependent. Porangaba extract decreased significantly (P < .05) the BC, IF-P, and IF-BC %ATI, and no modifications were verified on the shape of red BCs. Analysis of the results reveals that some physical parameters could be useful to aid in characterizing the extract studied. Moreover, it is possible that chemical compounds of this extract could have chelating/redox actions or be capable of binding to plasma and/or cellular proteins
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
A major and growing problems faced by modern society is the high production of waste and related effects they produce, such as environmental degradation and pollution of various ecosystems, with direct effects on quality of life. The thermal treatment technologies have been widely used in the treatment of these wastes and thermal plasma is gaining importance in processing blanketing. This work is focused on developing an optimized system of supervision and control applied to a processing plant and petrochemical waste effluents using thermal plasma. The system is basically composed of a inductive plasma torch reactors washing system / exhaust gases and RF power used to generate plasma. The process of supervision and control of the plant is of paramount importance in the development of the ultimate goal. For this reason, various subsidies were created in the search for greater efficiency in the process, generating events, graphics / distribution and storage of data for each subsystem of the plant, process execution, control and 3D visualization of each subsystem of the plant between others. A communication platform between the virtual 3D plant architecture and a real control structure (hardware) was created. The goal is to use the concepts of mixed reality and develop strategies for different types of controls that allow manipulating 3D plant without restrictions and schedules, optimize the actual process. Studies have shown that one of the best ways to implement the control of generation inductively coupled plasma techniques is to use intelligent control, both for their efficiency in the results is low for its implementation, without requiring a specific model. The control strategy using Fuzzy Logic (Fuzzy-PI) was developed and implemented, and the results showed satisfactory condition on response time and viability