10 resultados para Planets.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
n this work, we analyze the behavior of the chromospheric and coronal activities as a function of the mass and the orbital period of extrasolar planets which were detected by transit technique. So we look for possible effects of the planet on the star s chromosphere and corona. For this study we selected a sample of 48 stars with chromospheric activity indicator and 23 with coronal activity indicator. Our work is based on the work from Pont et al. (2011) in order to study stars with planets which were obtained by transit technique. Furthermore, we studied the relationship between planetary mass and orbital period with the chromospheric and coronal activity in order to better understand which influences the planets cause in the outer layers of stellar atmosphere. In our analysis we can observe that the mass of the planets exerts no influence in the stellar activity. However, we observed that the stellar coronal and chromospheric activities decrease with the increase of the orbital period of the planet
Resumo:
In this work, we analyze the behavior of the chromospheric and coronal activities as a function of the mass and the orbital period of extrasolar planets which were detected by transit technique. So we look for possible effects of the planet on the star s chromosphere and corona. For this study we selected a sample of 48 stars with chromospheric activity indicator and 23 with coronal activity indicator. Our work is based on the work from Pont et al. (2011) in order to study stars with planets which were obtained by transit technique. Furthermore, we studied the relationship between planetary mass and orbital period with the chromospheric and coronal activity in order to better understand which influences the planets cause in the outer layers of stellar atmosphere. In our analysis we can observe that the mass of the planets exerts no influence in the stellar activity. However, we observed that the stellar coronal and chromospheric activities decrease with the increase of the orbital period of the planet
Resumo:
The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars
Resumo:
In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems
Resumo:
Since Michel Mayor and his student Didier Queloz s pioneer announcement, in 1995, of the existence of a planet orbiting the star 51 Peg, up to present date, 695 extrasolar planets orbiting stars of spectral type F, G, K and M have been discovered. A study on the behavior of the total angular momentum of the planetary systems known up to present date becomes relevant when we know that about 98% of the angular momentum of the solar system is associated with the planets, although they represent only 0.15 percent of the mass of the whole system. In this dissertation we study the behavior of stellar angular momentum, orbital angular momentum and total angular momentum in a sample of 282 stars harboring planets, including 40 multiple systems. We observed that planetary systems containing more than one known planet have both higher orbital angular momentum and total angular momentum compared to those who have only one planet. This analysis shows that multiplanet systems tend to have higher momenta, suggesting that the planets in such systems that contribute to the greater portion momenta have been found. Thus, planetary systems with lower values for the momenta represent the best candidates to the discovery of new planets
Resumo:
ROTATION is one the most important aspects to be observed in stellar astrophysics. Here we investigate that particularly in stars with planets. This physical parameter supplies information about the distribution of angular momentum in the planetary system, as well as its role on the control of dierent phenomena, including coronal and cromospherical emission and on the ones due of tidal effects. In spite of the continuous solid advances made on the study of the characteristics and properties of planet host stars, the main features of their rotational behavior is are not well established yet. In this context, the present work brings an unprecedented study about the rotation and angular momentum of planet-harbouring stars, as well as the correlation between rotation and stellar and planetary physical properties. Our analysis is based on a sample of 232 extrasolar planets, orbiting 196 stars of dierent luminosity classes and spectral types. In addition to the study of their rotational behavior, the behavior of the physical properties of stars and their orbiting planets was also analyzed, including stellar mass and metallicity, as well as the planetary orbital parameters. As main results we can underline that the rotation of stars with planets present two clear features: stars with Tef lower than about 6000 K have slower rotations, while among stars with Tef > 6000 K we and moderate and fast rotations, though there are a few exceptions. We also show that stars with planets follow mostly the Krafts law, namely < J > / v rot. In this same idea we show that the rotation versus age relation of stars with planets follows, at least qualitatively, the Skumanich and Pace & Pasquini laws. The relation rotation versus orbital period also points for a very interesting result, with planet-harbouring stars with shorter orbital periods present rather enhanced rotation
Resumo:
In the present work, we have analyzed the behavior of the chromospheric activity of stars with planets, as a function of different planetary parameters, searching for possible effects of planets on the chromosphere of the hosting star. For this study we have selected a sample of 73 main sequence stars with planets, of spectral types F, G and K. Our analysis shows that among stars with planets presenting semi-major axis smaller than 0.15 AU, a few ones present enhanced CaII emission flux, paralleling recent results found in the literature for coronal X-ray flux. Nevertheless, in contrast to Kashyap et al. (2008), who claim that enhanced X-ray flux in stars with planets is associated to massive close-in planetary companions, we suggest that such an aspect, at least in the context of CaII emission flux, is rather an effect of stellar sample selection. We have also studied the behavior of the CaII emission as a function of orbital parameters such as orbital period and eccentricity, and no clear trend was found, reinforcing our present suggestion that enhanced chromospheric activity in stars with planets is an intrinsic stellar phenomenon
Resumo:
In the present study we compute the atmospheric parameters (Teff , log g and vmic, [Fe/H]) and chemical abundance of 16 ions (Fe I, Fe II, O I, Si I, Na I, Mg I, Al I, Ca I, Ti I, Co I, Ni I, Rb I, Zr I, Ba II, La II and Cr I) for 16 solar-like stars with masses between 0:8 and 1:2 Mfi aproximatedly, including 10 planet-host stars detected by the CoRoT Space Mission. For this study, we use data from the ESO public archive: (i) high resolution spectra (R 47000) from the UVES spectrograph on the VLT/UT2-ESO (for 7 stars, covering the wavelength range 3450-4515 Å and 5500-9400 Å) and (ii) high resolution spectra from HARPS spectrograph on the La Silla-ESO 3.60 m telescope (for 9 stars, covering the wavelength range 4200-6865 Å). Our spectral analysis is based on MARCS models of atmosphere and Turbospectrum spectroscopic tools. On the base of the computed parameters, the referred abundances appears to follow the same behavior of the solar curve abundances. Further, one observes a signifficant correlation between the abundance ratio [m/Fe] and condensation temperature (Tc) of refractory elements (Tc > 900 K). The behavior of the projected rotational velocity (v sin i) versus the computed abundances [m/Fe] is also analyzed, presenting no clear trends. This study oers additional constraints to trace the evolutive history of solar-like stars with planets, including the search for chemical dierences between stars with and without transit planets and anomalies in the studied abundances
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.
Resumo:
The discovery of giant stars in the spectral regions G and K, showing moderate to rapid rotation and single behavior, namely with constant radial velocity, represents one important topic of study in Stellar Astrophysics. Indeed, such anomalous rotation clearly violates the theoretical predictions on the evolution of stellar rotation, since in evolved evolutionary stages is expected that the single stars essentially have low rotation due to the evolutionary expansion. This property is well-established from the observational point of view, with different studies showing that for single giant stars of spectral types G and K values of the rotation are typically smaller than 5kms−1 . This Thesis seeks an effective contribution to solving the paradigm described above, aiming to search for single stars of spectral types G and K with anomalous rotation, tipically rotation of moderate to rapid, in other luminosity classes. In this context, we analyzed a large stellar sample consisting of 2010 apparently single stars of luminosity classes IV, III, II and Ib with spectral types G and K, with rotational velocity v sin i and radial velocity measurements obtained from observations made by CORAVEL spectrometers. As a first result of impact we discovered the presence of anomalous rotators also among subgiants, bright giants and supergiants stars, namelly stars of luminosity classes IV, II and Ib, in contrast to previous studies, that reported anomalous rotators only in the luminosity class III classic giants. Such a finding of great significance because it allows us to analyze the presence of anomalous rotation at different intervals of mass, since the luminosity classes considered here cover a mass range between 0.80 and 20MJ, approximately. In the present survey we discovered 1 subgiant, 9 giants, 2 bright giants and 5 Ib supergiants, in spectral regions G and K, with values of v sin i ≥ 10kms−1 and single behavior. This amount of 17 stars corresponds to a frequency of 0.8% of G and K single evolved stars with anomalous rotation in the mentioned classes of luminosities, listed at the Bright Star Catalog, which is complete to visual magnitude 6.3. Given these new findings, based on a stellar sample complete in visual magnitude, as that of the Bright Star Catalog, we conducted a comparative statistical analysis using the Kolmogorov- Smirnov test, from where we conclude that the distributions of rotational velocity, v sin i, for single evolved stars with anomalous rotation in luminosity classes III and II, are similar to the distributions of v sin i for spectroscopic binary systems with evolved components with the same spectral type and luminosity class. This vii result indicates that the process of coalescence between stars of a binary system might be a possible mechanism to explain the observed abnormal rotation in the referred abnormal rotators, at least among the giants and bright giants, where the rotation in excess would be associated with the transfer of angular momentum for the star resulting from the merger. Another important result of this Thesis concerns the behavior of the infrared emission in most of the stars with anomalous rotation here studied, where 14 stars of the sample tend to have an excess in IR compared with single stars with low rotation, within of their luminosity class. This property represents an additional link in the search for the physical mechanisms responsible for the abnormal observed rotation, since recent theoretical studies show that the accretion of objects of sub-stellar mass, such as brown dwarfs and giant planets, by the hosting star, can significantly raise its rotation, producing also a circumstellar dust disk. This last result seems to point in that direction, since it is not expected that dust disks occurring during the stage of star formation can survive until the stages of subgiants, giants and supergiants Ib. In summary, in this Thesis, besides the discovery of single G and K evolved stars of luminosity classes IV, II and Ib with anomalously high rotation compared to what is predicted by stellar evolution theory, we also present the frequency of these abnormal rotators in a stellar sample complete to visual magnitude 6.3. We also present solid evidence that coalescence processes in stellar binary systems and processes of accretion of brown dwarfs star or giant planets, by the hosting stars, can act as mechanisms responsible for the puzzling phenomenon of anomalous rotation in single evolved stars.