150 resultados para Piscinas - Aquecimento
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.
Resumo:
Heating rate is one of the main variables that determine a fire cycle. In industrial processes that use high temperatures, greater fire great can reduce the cost of production and increase productivity. The use of faster and more efficient fire cycles has been little investigated by the structural ceramic industry in Brazil. However, one of the possibilities that aims at modernizing the sector is the use of roller kilns and the inclusion of natural gas as fuel. Thus, the purpose of this study is to investigate the effect of heating rate on the technological properties of structural ceramic products. Clay raw materials from the main ceramic industries in the state of Rio Grande do Norte were characterized. Some of the raw materials characterized were formulated to obtain the best physical and mechanical properties. Next, raw materials and formulations were selected to study the influence of heating rate on the final properties of the ceramic materials. The samples were shaped by pressing and extrusion and submitted to rates of 1 °C/min, 10 °C/min and 20 °C/min, with final temperatures of 850 °C, 950 °C and 1050 °C. Discontinuous cycles with rates of 10 °C/min or 15 °C/min up to 600 °C and a rate of 20 °C/min up to final temperature were also investigated. Technological properties were determined for all the samples and microstructural analysis was carried out under a number of fire conditions. Results indicate that faster and more efficient fire cycles than those currently in practice could be used, limiting only some clay doughs to certain fire conditions. The best results were obtained for the samples submitted to slow cycles up to 600 °C and fast fire sinterization up to 950 °C. This paper presents for the first time the use of a fast fire rate for raw materials and clay formulations and seeks to determine ideal dough and processing conditions for using shorter fire times, thus enabling the use of roller kilns and natural gas in structural ceramic industries
Resumo:
Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding
Resumo:
The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID
Resumo:
An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials
Resumo:
It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of 40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.
Resumo:
It was studied a system for heating water to be used to obtain water for bathing at home, the absorbing surface of the collector is formed by one plate of polycarbonate. The polycarbonate plate has 6 mm thick, 1.050 mm wide and 1.500 mm long with an area equal to 1,575 m². The plate was attached by its edges parallel to PVC tubes of 32 mm. The system worked under the thermo-siphon and was tested for two configurations: plate absorber with and without isolation of EPS of 30 mm thick on the bottom surface in order to minimize heat losses from the bottom. The tank's thermal heating system is alternative and low cost, since it was constructed from a polyethylene reservoir for water storage, with a volume of 200 liters. Will present data on the thermal efficiency, heat loss, water temperature of thermal reservoir at the end of the process simulation and baths. Will be demonstrated the feasibility of thermal, economic and material pickup proposed for the intended purpose.
Resumo:
This paper presents an analysis of technical and financial feasibility of the use of a solar system for water heating in a fictitious hotel located in the Northeast region. Thereunto it is used techniques of solar collectors´ sizing and methods of financial mathematics, such as Net Present Value (NPV), Internal Rate of Return (IRR) and Payback. It will also be presented a sensitivity analysis to verify which are the factors that impact the viability of the solar heating. Comparative analysis will be used concerning three cities of distinct regions of Brazil: Curitiba, Belém and João Pessoa. The viability of using a solar heating system will be demonstrated to the whole Brazil, especially to the northeast region as it is the most viable for such an application of solar power because of its high levels of solar radiation. Among the cities examined for a future installation of solar heating systems for water heating in the hotel chain, João Pessoa was the one that has proved more viable.
Resumo:
Due to the increasing need to promote the use of resources that support the environment and the clean industry, the science has developed in the area of natural resource use as well as enhanced use of the renewable energy sources. Considering also the great need for clean water and wide availability of salt or brackish water, added to the great solar energy potential in northeastern of the Brazil, it was developed a solar distiller whose main difference is its system of pre-solar heating also. From experimental adjustments, the system was developed by the use of a cylindrical solar concentrator coupled to a conventional distiller. The system is designed such that attempt to facilitate the process termination trap to ensure constant movement of the fluid mass and thus enable higher temperatures to the system and thus fetch a higher amount of distillate collected. In a stage of the experiment were used a forced circulation to try to further increase the amount of energy exchange system. To develop the study were set up four settings for comparison in which one was only distiller simple as basic parameter, the second proposed configuration were with the coupling of the concentration triggered manually every 30 minutes to monitor the sun, the third configuration occurred with automatic triggering of a timer, and the fourth configuration was also used a pumping system that tried to improve the circulation of the fluid. With the comparative analysis of the results showed a gain in the amount of distillate system, especially in the forced model
Resumo:
In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin
Resumo:
In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.
Resumo:
To evaluate the effects of warm-up and stretching, singly or combined, on isokinetic performance and electromyographic activity of the biceps femoris. Materials and methods: Sixty-four volunteers of both sexes, with mean age of 23,1 ± 3,5 years and mean body mass index of 23,5 ± 2,5 Kg/m2 were randomly assigned into 4 groups: control, warm-up (stationary bicycle for 10 minutes), stretching (4 sets of 30 seconds of hamstring muscles static stretching) and warm-up + stretching. All the volunteers were submitted to evaluation pre and post-intervention of the muscle latency time and biceps femoris RMS and the passive torque, peak torque and power of the hamstring muscles. Results: The warm-up + stretching group had reduction of muscle latency time. There was a reduction of RMS during passive torque evaluation in stretching group. The RMS during isometric evaluation was reduced in all experimental groups. The RMS during eccentric evaluation showed reduction in control and warm-up + stretching groups. The passive torque and the eccentric peak torque had no significant differences pre to post-intervention in any group. There was reduction in isometric peak torque in all groups. Conclusion: The warm-up and stretching, when applied in combination can reduce the muscle latency time; stretching protocol promoted neural changes; the protocols used did not alter the muscle viscoelastic properties