9 resultados para Pilot-scale

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation for termoeletricity is characterized as a solid process of conversion of thermal energy (heat) in electric without the necessity of mobile parts. Although the conversion process is of low efficiency the system presents high degree of trustworthiness and low requisite of maintenance and durability. Its principle is based on the studies of termogeneration carried through by Thomas Seebeck in 1800. The frank development of the technologies of solid state for termoeletricity generation, the necessity of the best exploitation of the energy, also with incentive the cogeneration processes, the reduction of the ambient impact allies to the development of modules semiconductors of high efficiency, converge to the use of the thermoeletric generation through components of solid state in remote applications. The work presents the development, construction and performance evaluation of an prototype, in pilot scale, for energy tri-generation aiming at application in remote areas. The unit is composed of a gas lamp as primary source of energy, a module commercial semiconductor for thermoelectric generation and a shirt for production of the luminosity. The project of the device made compatible a headstock for adaptation in the gas lamp, a hot source for adaptation of the module, an exchanger of to be used heat as cold source and to compose first stage of cogeneration, an exchanger of tubular heat to compose second stage of cogeneration, the elaboration of a converter dc-dc type push pull, adequacy of a system of acquisition of temperature. It was become fullfilled assembly of the prototype in group of benches for tests and assay in the full load condition in order to evaluate its efficiency, had been carried through energy balance of the unit. The prototype presented an electric efficiency of 0,73%, thermal of 56,55%, illumination of 1,35% and global of 58,62%. The developed prototype, as the adopted methodology of assay had also taken care of to the considered objectives, making possible the attainment of conclusive results concerning to the experiment. Optimization in the system of setting of the semicondutor module, improvement in the thermal insulation and design of the prototype and system of protection to the user are suggestions to become it a commercial product

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates a new treatment system of wastewater by anaerobic and aerobic biological filters for nitrogen modification. The main objective of this study was evaluate, on a pilot scale, quantitatively and qualitatively the bacterian nitrifying community in a experimental sewage treatment system made by aerobics biological filters in series, in search of figure out the dynamic of nitrogen modification process. It was collected and laboratorial analysed microbiologically, regarding NMP of Nitrosomonas e Nitrobacter, and physical-chemically considering nitrogen sequence. We conclude that: the association in aerobic biological filters under nutrition controlled conditions and oxygen level allows the appearance of bacterian community responsible for the nitrogen modification; the method used, despite its limitations, provided the selection of autotrophic nitrifying microorganisms, allowing the identification of Nitrosomonas and Nitrobacter; the flow direction tested in the experimental unit did not affect the nitrifying bacterial community, certainly because they were kept drowned and did not occur flow speed that could breake the formed biomass; the nitrification process happened in aerated biological filters in all phases of the research, comproved by microbiological tests; in the third phase of the research the increase of the oxygen rate was significant for the nitrificant bacterian community in the aerate biological filters, allowing its growth, occurring relation between the efficiency of nitrification system and the quantity of organisms responsible for this process; the conduit used in aerated biological filters showed satisfactory performance support material to the nitrifying bacteria development

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only 32% of the population of Natal is attended by sewage, while the remaining population use pits and septic tanks. The characterization of the contents of septic tanks and pits contributes to the performance of such system and may guide the decision on treatment of these contents. The main of this research is to characterize the contents of interior residential pits and septic tanks in the greater Natal, with the following specific goals: to develop and manufacture a sampler capable of collecting a representative sample of the entire column (the surface scum, the clarified liquid and sludge bottom); to compare the contents of the tanks with the pits; to compare the contents of the septage from vacuum trucks; to relate the composition content with socioeconomic characteristics of households; to compare the content in both chambers of the septic tanks in series; to assess the situation of the content before and six months after the cleanness; and ultimately propose a pilot scale plant for treatment of septage. Once the sampler was developed, samples were collected within 14 septic tanks and 10 pits in many districts of Natal. Medians of the 24 systems were obtained: temperature, pH, conductivity, oil and grease, total solids, total suspended solids and sediments of 28.0 °C, 6.95; 882 mS/cm, 75.2 mg/L; 10,169 mg/L, 6,509 mg/L and 175 mL/L respectively; 111.0 mgN/L for ammonia, 130.5 mgN/ L for organic nitrogen, 0.2 mgN/L for nitrite, 0.4 mg/L for nitrate; 8935 mgO2/L for COD, 29.2 mgP/L for total phosphorus, thermotolerant coliforms from 9.95 E +06 CFU/100mL helminth eggs and 9.2 eggs/L with a maximum concentration of 688 eggs/L and minimum of 0 eggs/L. Medians of organic nitrogen and TKN were significantly different between groups of tanks and pits. The systems with cleanness gap from 11 and 20 years presented the higher concentrations for most variables. The effluent from the toilets and bathrooms participate more effectively in contributing fractions of solids, alkalinity, nitrogen, COD, total phosphorus, thermotolerant coliforms and helminth eggs. The systems used by socioeconomics class with income from R$ 3,700.00 to R$ 7,600.00, presented higher concentrations for COD, nitrogen, solids and helminth eggs. The first of the two chambers had always presented higher concentrations over the second compartment. The analysis of variance for most variables, showed that the values of septic tanks, pits and septage from vacuum trucks belong to the same group. In the samples taken after cleanness, the median of pH and temperature increased, while alkalinity, COD, organic nitrogen, total phosphorus, ammonia and helminth eggs decreased. The oils and greases and thermotolerant coliforms had slightly varied due to the continuous release of sewage into the systems that maintained their steady state concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to assess the potential for industrial reuse of textile wastewater, after passing through a physical and chemical pretreatment, into denim washing wet processing operations in an industrial textile laundry, with no need for complementary treatments and dilutions. The methodology and evaluation of the proposed tests were based on the production techniques used in the company and upgraded for the experiments tested. The characterization of the treated effluent for 16 selected parameters and the development of a monitoring able to tailor the treated effluent for final disposal in accordance with current legislation was essential for the initiation of testing for reuse. The parameters color, turbidity, SS and pH used were satisfactory as control variables and presents simple determination methods. The denim quality variables considered were: color, odor, appearance and soft handle. The tests were started on a pilot scale following complexity factors attributed to the processes, in denim fabric and jeans, which demonstrated the possibility of reuse, because there was no interference in the processes and at quality of the tested product. Industrial scale tests were initiated by a step control that confirmed the methodology efficiency applied to identify the possibility of reuse by tests that precede each recipe to be processed. 556 replicates were performed in production scale for 47 different recipes of denim washing. The percentage of water reuse was 100% for all processes and repetitions performed after the initial adjustment testing phase. All the jeans were framed with the highest quality for internal control and marketed, being accepted by contractors. The full-scale use of treated wastewater, supported by monitoring and evaluation and control methodology suggested in this study, proved to be valid in textile production, not given any negative impact to the quality the produced jeans under the presented conditions. It is believed that this methodology can be extrapolated to other laundries to determine the possibility of reuse in denim washing wet processing with the necessary modifications to each company.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stabilization pond system consisting in more sewage treatment used in Rio Grande do Norte (RN), Brazil, representing about 90% of all systems. Fecal bacteria are removed mainly facultative ponds and in maturation ponds. Many factors influence bacterial decay, such as the levels of pH and DO, temperature, light intensity, HDT and nutrient availability. The bacterial decay rate (Kb) is calculated considering many variables, but the hydraulic regime is a significant influence for microorganisms removal, and the dispersed flow which best characterizes a stabilization pond. However, some authors developed equations for the Kb accordant plug flow and complete mixing. This research study aimed to evaluate the bacterial decay of fecal coliform and Enterococcus sp. in stabilization ponds designed to treat domestic sewage, full-scale, in RN. All systems have assessed pretreatment, a facultative pond (LF) followed by two maturation (LM1 and LM2). The parameters availed were: temperature, pH, DO, BOD5, COD, fecal coliform, Enterococcus sp., Chlorophyll a, total suspended solids, fixed and volatile. In general, there were not significant differences for pH, DO and temperature in the ponds, except for the new systems, since they have low flow and hydraulic loads. The removal of organic matter in the ponds was low, about 70%, and nearly all are overloaded organic and operational problems. The bacterial removals were low, with average 96% for LF for fecal coliform, and 98% for Enterococcus sp.; LM1 were in itself a removal for fecal coliform about 71%, and 81% for Enterococcus sp.; LM2 have efficiency of 69% for fecal coliform, and 68% for Enterococcus sp. The equation proposed by Von Sperling (1999), according to the dispersed flow regime, generated empirical values of Kb more approximate to calculated values of Kb. On average, the calculated Kb to coliforms in the LF was 0.31 d-1, and for both maturation ponds were 0.35 d-1. For Enterococcus sp. the average was 0.40 d-1 for LF, 0.55 d-1 for LM1, and 0.58 d-1 for LM2. These results also showed that the Kb obtained in full-scale systems are smaller than those found in pilot-scale ponds. Moreover, one can say that the equation proposed by Marais (1974), according to the complete-mix regime, overestimates Kb. Actual results of Kb indicated that fecal coliforms are more resistant to adverse conditions present in stabilization ponds than Enterococcus sp., therefore, an indicator of microbiological safety and efficiency. The factors significant interventions in the rate of bacterial decay were concentrations of COD, the organic loading and HDT. The few Kb relationship between pH, DO and temperature were not significant. Finally, we conclude that it s essential to correct operation and maintenance, for not performing these activities is one of the main factors contributing to low rates of bacterial decay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The groundwater quality has been compromised as a result of the intensification of human activities over the years. Groundwater contamination by nitrate is one of the effects of this degradation, a socio-environmental problem that affects many regions of the world and particular the city of Natal (RN). Developing techniques for nitrate removal in water is intended to eliminate or reduce the concentration of this compound, and those that involve biological processes have produced economic and environmental advantages. This study proposes a technology for biological removal of nitrate in water supply for humans, using the endocarp s coconut as a carbon source and bacteria support. The experiments were performed in pilot scale anoxic, testing different areas of the substrate surface. Results showed high rates nitrate removal during the monitoring period, noting the occurrence of denitrification after the beginning of system operation. The best performance was achieved in the treatment system containing substrate surface area increased, indicating that the decrease in the endocarp size contributed to increased bacterial activity, improving the ability to remove nitrate. About the quality analyzed aspects of water, it was found that the proposed technology has the potential water use for human consumption

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stabilization pond is the main technology used for treatment wastewater, in northeast Brazil, due to lower cost of deployment, operation and maintenance compared to other technologies. Most systems of stabilization ponds has been in operation for some time, on average 10 years of operation, receiving high organic loads and do not have good removal efficiencies of the main parameters for which have been designed. Therefore it is necessary to work to quantify the efficiency of current systems. This study evaluated the biodegradability of organic matter in raw sewage, the removal of organic matter in reactors and determination of the kinetic constant removal of organic matter (k), both in reactors and in raw sewage, based on the analysis made in the laboratory and through mathematical methods proposed in the literature, in nine systems stabilization ponds, located in Rio Grande do Norte. In relation the degradation kinetics in stabilization ponds, it was observed that many papers published in the literature were obtained in pilot-scale systems, which often, due to the action of external factors such as wind and temperature, these can t be considered as a reference in the analysis of the kinetic constant K, so the need for more research into systems of scale. This study had three distinct phases and simultaneous, routine monitoring, study of the daily cycle and the determination of kinetic constant of degradation of organic matter (K). The monitoring showed that the removal efficiencies of organic matter on most systems were lower than suggested by the literature, the best efficiencies of around 76% (BOD) and 72% (COD) and the worst of the order of 48% (BOD) and 55% (COD). The calculation of K in raw sewage (Ke) was within the range of variation expected in the literature (0.35 to 0.60 days-1). Already for the results obtained for K in the reactors (Kr), there were well below the values recommended in the literature (0.25 to 0.40 d-1 for complete mix and from 0.13 to 0.17 d-1 for flow dispersed), in line with the overloads that organic systems are subject

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype