3 resultados para Physiological potential

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mimosa caesalpiniaefolia Benth. is a forest species of the Mimosaceae family, recommended for recovery of degraded areas. The evaluation of vigor by biochemical tests have been an important tool in the control of seed quality programs, and the electrical conductivity and potassium leaching the most efficient in the verifying the physiological potential. The objective, therefore, to adjust the methodology of the electrical conductivity test for seeds of M. caesalpiniaefolia, for then compare the efficiency of this test with the potassium in the evaluation of seed vigor of different lots of seeds M. caesalpiniaefolia. To test the adequacy of the electrical conductivity were used different combinations of temperatures , 25 °C and 30 ºC, number of seeds , 25 and 50, periods of imbibition , 4 , 8 , 12 , 16 and 24 hours , and volumes deionized water, 50 mL and 75mL. For potassium leaching test, which was conducted from the results achieved by the methodology of the adequacy of the electrical conductivity test, to compare the efficiency of both tests , in the classification of seeds at different levels of vigor, and the period 4 hours also evaluated because the potassium leaching test can be more efficient in the shortest time . The best combination obtained in experiment of electrical conductivity is 25 seeds soaked in 50 mL deionized or distilled water for 8 hours at a temperature of 30 ° C. Data were subjected to analysis of variance, the means were compared with each other by F tests and Tukey at 5 % probability, and when necessary polynomial regression analysis was performed. The electrical conductivity test performed at period eight hour proved to be more efficient in the separation of seed lots M. caesalpiniaefolia at different levels of vigor compared to the potassium test

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of seed vigor is an important factor for detection of lots of high quality seeds, so that development of procedures to evaluate the physiological potential has been an important tool in quality control programs seeds. In this sense the study aimed to adapt the methodologies of accelerated aging, electrical conductivity and potassium leaching to evaluate Moringa oleifera seed vigor LAM.. Therefore, four lots of moringa seeds were subjected to the germination tests, seedling emergence, speed of emergence index, emergence first count, length and dry mass of seedlings and cold test for their physiological characterization, in addition to accelerated aging, electrical conductivity and potassium leaching. The experimental design was completely randomized with four replications of 50 seeds and the means compared by Tukey test at 5% probability. For accelerated aging the periods were studied aging 12, 24 and 72 hours at 40, 42 and 45°C. For the electrical conductivity test was used to a temperature of 25°C for periods of 4, 8, 12, 16 and 24 hours of immersion in 75 to 125 mL of distilled water, using 25 to 50 seeds, and for potassium leaching test samples were used 25 to 50 seeds, placed in plastic cups containing 70 and 100 mL of distilled water at 25°C for periods of 1, 2, 3, 4, 5 and 6 hours. From the results obtained, it can be inferred that the methods best fit for the accelerated aging test Moringa seeds were a temperature of 40°C for 12 to 72 hours, 42°C 72 hours 45°C 24 hours . In the electrical conductivity test Moringa seeds, the combination of 50 seeds in 75 mL distilled water for a period of immersion of 4 hours and 50 seeds in 125 mL of 4 hours were efficient for the differentiation of lots of Moringa seeds as to vigor and for potassium leaching test moringa seeds, the combination of 50 seeds in 100mL of distilled water allowed the separation of lots of four levels of vigor, at 2 hours of immersion, showing promise in evaluate the quality of moringa seeds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of seed vigor is an important factor for detection of lots of high quality seeds, so that development of procedures to evaluate the physiological potential has been an important tool in quality control programs seeds. In this sense the study aimed to adapt the methodologies of accelerated aging, electrical conductivity and potassium leaching to evaluate Moringa oleifera seed vigor LAM.. Therefore, four lots of moringa seeds were subjected to the germination tests, seedling emergence, speed of emergence index, emergence first count, length and dry mass of seedlings and cold test for their physiological characterization, in addition to accelerated aging, electrical conductivity and potassium leaching. The experimental design was completely randomized with four replications of 50 seeds and the means compared by Tukey test at 5% probability. For accelerated aging the periods were studied aging 12, 24 and 72 hours at 40, 42 and 45°C. For the electrical conductivity test was used to a temperature of 25°C for periods of 4, 8, 12, 16 and 24 hours of immersion in 75 to 125 mL of distilled water, using 25 to 50 seeds, and for potassium leaching test samples were used 25 to 50 seeds, placed in plastic cups containing 70 and 100 mL of distilled water at 25°C for periods of 1, 2, 3, 4, 5 and 6 hours. From the results obtained, it can be inferred that the methods best fit for the accelerated aging test Moringa seeds were a temperature of 40°C for 12 to 72 hours, 42°C 72 hours 45°C 24 hours . In the electrical conductivity test Moringa seeds, the combination of 50 seeds in 75 mL distilled water for a period of immersion of 4 hours and 50 seeds in 125 mL of 4 hours were efficient for the differentiation of lots of Moringa seeds as to vigor and for potassium leaching test moringa seeds, the combination of 50 seeds in 100mL of distilled water allowed the separation of lots of four levels of vigor, at 2 hours of immersion, showing promise in evaluate the quality of moringa seeds.